Cargando…

First identification and molecular phylogeny of Sparganum proliferum from endangered felid (Panthera onca) and other wild definitive hosts in one of the regions with highest worldwide biodiversity

After decades of being neglected, broad tapeworms now attract growing attention thanks to the increasing number of reports from humans but also thanks to many advancements achieved by application of molecular methods in diagnosis and epidemiological studies. Regarding sparganosis, unfortunately gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Arrabal, Juan Pablo, Pérez, Matías Gastón, Arce, Lucas Federico, Kamenetzky, Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554206/
https://www.ncbi.nlm.nih.gov/pubmed/33083226
http://dx.doi.org/10.1016/j.ijppaw.2020.09.002
Descripción
Sumario:After decades of being neglected, broad tapeworms now attract growing attention thanks to the increasing number of reports from humans but also thanks to many advancements achieved by application of molecular methods in diagnosis and epidemiological studies. Regarding sparganosis, unfortunately general uniformity of most species, their high intraspecific variability and lack of agreement among researchers has led to confusion about the classification of Spirometra/Sparganum species. For the first time we determined adult, eggs and plerocercoid life cycle stages and the molecular phylogeny of Sparganum proliferum obtained from endangered wild felids (Panthera onca, Leopardus pardalis, Leopardus guttulus and Herpailurus yagoauroundi) in one of the largest continuous remnants of worldwide biodiversity, the Atlantic Forest from South America. Our results showed that at least 57% of total species of wild felids in this natural area could act as definitive hosts of Sparganum proliferum. We conclude that the availability of more morphological characteristics are needed in order to secure reliable characterization and diagnosis of sparganosis. The integration of these data with molecular analysis of mitochondrial DNA sequences will be useful for species discrimination.