Cargando…

Chlorella sp. Protective Effect on Acetaminophen-Induced Liver Toxicity in ICR Mice

BACKGROUND: A Chlorella sp. (CLC) has a health supplement in health effects including an ability to treat cancer. The Chlorella sp. Ability to reduce acetaminophen-induced liver injury is still unknown. The hepatoprotective function of CLC was determined in an APAP-induced liver injury mouse model....

Descripción completa

Detalles Bibliográficos
Autor principal: Wu, Jia-Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554449/
https://www.ncbi.nlm.nih.gov/pubmed/33088439
http://dx.doi.org/10.4103/ijpvm.IJPVM_452_17
Descripción
Sumario:BACKGROUND: A Chlorella sp. (CLC) has a health supplement in health effects including an ability to treat cancer. The Chlorella sp. Ability to reduce acetaminophen-induced liver injury is still unknown. The hepatoprotective function of CLC was determined in an APAP-induced liver injury mouse model. METHODS: Male ICR mice were randomly divided into normal control, APAP, APAP + Sm (silymarin) and APAP + CLC (0.2%, 0.5% and 1%) groups. The glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), Albumin, and BUN plasma activities were detected using blood biochemistry assay. The hepatic tissue GOT, GPT, superoxide dismutase (SOD) and catalase (CAT) activity were also detected. Lipid peroxidation, MDA, protein expression levels were examined. RESULTS: The results showed that the 1% CLC supplementation group and Silymarin (Sm) could significantly alleviate increased serum GOT, GPT and BUN, and the decreased serum Albumin. At the same time, the increased hepatic tissue GOT and GPT activities were alleviated as well as MDA. Enhanced SOD and CAT protein expression levels were increased in APAP-induced liver injury. Lipofuscin and hepatic veins cups disappeared in the Sm and 1% CLC supplementation groups shown with H&E staining. CONCLUSIONS: Therefore, CLC probably could develop hepatoprotective products against chemical-induced liver damage.