Cargando…
Deep Learning Based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces
Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different b...
Autores principales: | Roy, Sujit, Chowdhury, Anirban, McCreadie, Karl, Prasad, Girijesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554529/ https://www.ncbi.nlm.nih.gov/pubmed/33100953 http://dx.doi.org/10.3389/fnins.2020.00918 |
Ejemplares similares
-
Mapping and decoding cortical engagement during motor imagery, mental arithmetic, and silent word generation using MEG
por: Youssofzadeh, Vahab, et al.
Publicado: (2023) -
A magnetoencephalography dataset for motor and cognitive imagery-based brain-computer interface
por: Rathee, Dheeraj, et al.
Publicado: (2021) -
Competing at the Cybathlon championship for people with disabilities: long-term motor imagery brain–computer interface training of a cybathlete who has tetraplegia
por: Korik, Attila, et al.
Publicado: (2022) -
Application of Continuous Wavelet Transform and Convolutional Neural Network in Decoding Motor Imagery Brain-Computer Interface
por: Lee, Hyeon Kyu, et al.
Publicado: (2019) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012)