Cargando…
Fatigue-Related and Timescale-Dependent Changes in Individual Movement Patterns Identified Using Support Vector Machine
The scientific and practical fields—especially high-performance sports—increasingly request a stronger focus be placed on individual athletes in human movement science research. Machine learning methods have shown efficacy in this context by identifying the unique movement patterns of individuals an...
Autores principales: | Burdack, Johannes, Horst, Fabian, Aragonés, Daniel, Eekhoff, Alexander, Schöllhorn, Wolfgang Immanuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554555/ https://www.ncbi.nlm.nih.gov/pubmed/33101124 http://dx.doi.org/10.3389/fpsyg.2020.551548 |
Ejemplares similares
-
Systematic Comparison of the Influence of Different Data Preprocessing Methods on the Performance of Gait Classifications Using Machine Learning
por: Burdack, Johannes, et al.
Publicado: (2020) -
Learning Multiple Movements in Parallel—Accurately and in Random Order, or Each with Added Noise?
por: Apidogo, Julius B., et al.
Publicado: (2022) -
Can Individual Movement Characteristics Across Different Throwing Disciplines Be Identified in High-Performance Decathletes?
por: Horst, Fabian, et al.
Publicado: (2020) -
Modeling biological individuality using machine learning: A study on human gait
por: Horst, Fabian, et al.
Publicado: (2023) -
Cognitive Enhancement through Differential Rope Skipping after Math Lesson
por: Burdack, Johannes, et al.
Publicado: (2022)