Cargando…
A Bayesian 2D functional linear model for gray-level co-occurrence matrices in texture analysis of lower grade gliomas
In cancer radiomics, textural features evaluated from image intensity-derived gray-level co-occurrence matrices (GLCMs) have been studied to evaluate gray-level spatial dependence within the regions of interest in the brain. Most of these analysis work with summary statistics (or texture-based featu...
Autores principales: | Chekouo, Thierry, Mohammed, Shariq, Rao, Arvind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554657/ https://www.ncbi.nlm.nih.gov/pubmed/33035963 http://dx.doi.org/10.1016/j.nicl.2020.102437 |
Ejemplares similares
-
Some comments on texture analysis and the use of co-occurrence matrices
por: Carter, P
Publicado: (1979) -
Texture Analysis on Ultrasound: The Effect of Time Gain Compensation on Histogram Metrics and Gray-Level Matrices
por: Vara, Giulio, et al.
Publicado: (2020) -
Identification of masses in digital mammogram using gray level co-occurrence matrices
por: Mohd. Khuzi, A, et al.
Publicado: (2009) -
Deep fusion of gray level co-occurrence matrices for lung nodule classification
por: Saihood, Ahmed, et al.
Publicado: (2022) -
Bayesian inference of transition matrices from incomplete graph data with a topological prior
por: Perri, Vincenzo, et al.
Publicado: (2023)