Cargando…
FACS-Based Proteomics Enables Profiling of Proteins in Rare Cell Populations
Understanding disease pathology often does not require an overall proteomic analysis of clinical samples but rather the analysis of different, often rare, subpopulations of cells in a heterogeneous mixture of cell types. For the isolation of pre-specified cellular subtypes, fluorescence activated ce...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554798/ https://www.ncbi.nlm.nih.gov/pubmed/32911660 http://dx.doi.org/10.3390/ijms21186557 |
Sumario: | Understanding disease pathology often does not require an overall proteomic analysis of clinical samples but rather the analysis of different, often rare, subpopulations of cells in a heterogeneous mixture of cell types. For the isolation of pre-specified cellular subtypes, fluorescence activated cell sorting (FACS) is commonly used for its ability to isolate the required cell populations with high purity, even of scarce cell types. The proteomic analysis of a limited number of FACS-sorted cells, however, is very challenging as both sample preparation inefficiencies and limits in terms of instrument sensitivity are present. In this study, we used CD14+CD15+ immune cells sorted out of peripheral blood mononuclear cells isolated from whole blood to improve and evaluate FACS-based proteomics. To optimize both the protein extraction protocol and the mass spectrometry (MS) data acquisition method, PBMCs as well as commercialized HeLa digest were used. To reflect the limited number of sorted cells in some clinical samples, different numbers of sorted cells (1000, 5000, 10,000, or 50,000) were used. This allowed comparing protein profiles across samples with limited protein material and provided further insights in the benefits and limitations of using a very limited numbers of cells. |
---|