Cargando…
Different Nitro-Oxidative Response of Odontarrhena lesbiaca Plants from Geographically Separated Habitats to Excess Nickel
Odontarrhena lesbiaca is an endemic species to the serpentine soils of Lesbos Island (Greece). As a nickel (Ni) hyperaccumulator, it possesses an exceptional Ni tolerance; and it can accumulate up to 0.2–2.4% Ni of its leaves’ dry weight. In our study, O. lesbiaca seeds from two geographically separ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554898/ https://www.ncbi.nlm.nih.gov/pubmed/32906835 http://dx.doi.org/10.3390/antiox9090837 |
Sumario: | Odontarrhena lesbiaca is an endemic species to the serpentine soils of Lesbos Island (Greece). As a nickel (Ni) hyperaccumulator, it possesses an exceptional Ni tolerance; and it can accumulate up to 0.2–2.4% Ni of its leaves’ dry weight. In our study, O. lesbiaca seeds from two geographically separated study sites (Ampeliko and Loutra) were germinated and grown on control and Ni-containing (3000 mg/kg) soil in a rhizotron system. Ni excess induced significant Ni uptake and translocation in both O. lesbiaca ecotypes and affected their root architecture differently: plants from the Ampeliko site proved to be more tolerant; since their root growth was less inhibited compared to plants originated from the Loutra site. In the roots of the Ampeliko ecotype nitric oxide (NO) was being accumulated, while the degree of protein tyrosine nitration decreased; suggesting that NO in this case acts as a signaling molecule. Moreover, the detected decrease in protein tyrosine nitration may serve as an indicator of this ecotype’s better relative tolerance compared to the more sensitive plants originated from Loutra. Results suggest that Ni hypertolerance and the ability of hyperaccumulation might be connected to the plants’ capability of maintaining their nitrosative balance; yet, relatively little is known about the relationship between excess Ni, tolerance mechanisms and the balance of reactive nitrogen species in plants so far. |
---|