Cargando…
Rapid and Efficient Colony-PCR for High Throughput Screening of Genetically Transformed Chlamydomonas reinhardtii
Microalgae biotechnologies are rapidly developing into new commercial settings. Several high value products already exist on the market, and biotechnological development is focused on genetic engineering of microalgae to open up future economic opportunities for food, fuel and pharmacological produc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554959/ https://www.ncbi.nlm.nih.gov/pubmed/32927613 http://dx.doi.org/10.3390/life10090186 |
_version_ | 1783593895544750080 |
---|---|
author | Nouemssi, Serge Basile Ghribi, Manel Beauchemin, Rémy Meddeb-Mouelhi, Fatma Germain, Hugo Desgagné-Penix, Isabel |
author_facet | Nouemssi, Serge Basile Ghribi, Manel Beauchemin, Rémy Meddeb-Mouelhi, Fatma Germain, Hugo Desgagné-Penix, Isabel |
author_sort | Nouemssi, Serge Basile |
collection | PubMed |
description | Microalgae biotechnologies are rapidly developing into new commercial settings. Several high value products already exist on the market, and biotechnological development is focused on genetic engineering of microalgae to open up future economic opportunities for food, fuel and pharmacological production. Colony-polymerase chain reaction (colony-PCR or cPCR) is a critical method for screening genetically transformed microalgae cells. However, the ability to rapidly screen thousands of transformants using the current colony-PCR method, becomes a very laborious and time-consuming process. Herein, the non-homologous transformation of Chlamydomonas reinhardtii using the electroporation and glass beads methods generated more than seven thousand transformants. In order to manage this impressive number of clones efficiently, we developed a high-throughput screening (HTS) cPCR method to rapidly maximize the detection and selection of positively transformed clones. For this, we optimized the Chlamydomonas transformed cell layout on the culture media to improve genomic DNA extraction and cPCR in 96-well plate. The application of this optimized HTS cPCR method offers a rapid, less expensive and reliable method for the detection and selection of microalgae transformants. Our method, which saves up to 80% of the experimental time, holds promise for evaluating genetically transformed cells and selection for microalgae-based biotechnological applications such as synthetic biology and metabolic engineering. |
format | Online Article Text |
id | pubmed-7554959 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75549592020-10-14 Rapid and Efficient Colony-PCR for High Throughput Screening of Genetically Transformed Chlamydomonas reinhardtii Nouemssi, Serge Basile Ghribi, Manel Beauchemin, Rémy Meddeb-Mouelhi, Fatma Germain, Hugo Desgagné-Penix, Isabel Life (Basel) Article Microalgae biotechnologies are rapidly developing into new commercial settings. Several high value products already exist on the market, and biotechnological development is focused on genetic engineering of microalgae to open up future economic opportunities for food, fuel and pharmacological production. Colony-polymerase chain reaction (colony-PCR or cPCR) is a critical method for screening genetically transformed microalgae cells. However, the ability to rapidly screen thousands of transformants using the current colony-PCR method, becomes a very laborious and time-consuming process. Herein, the non-homologous transformation of Chlamydomonas reinhardtii using the electroporation and glass beads methods generated more than seven thousand transformants. In order to manage this impressive number of clones efficiently, we developed a high-throughput screening (HTS) cPCR method to rapidly maximize the detection and selection of positively transformed clones. For this, we optimized the Chlamydomonas transformed cell layout on the culture media to improve genomic DNA extraction and cPCR in 96-well plate. The application of this optimized HTS cPCR method offers a rapid, less expensive and reliable method for the detection and selection of microalgae transformants. Our method, which saves up to 80% of the experimental time, holds promise for evaluating genetically transformed cells and selection for microalgae-based biotechnological applications such as synthetic biology and metabolic engineering. MDPI 2020-09-10 /pmc/articles/PMC7554959/ /pubmed/32927613 http://dx.doi.org/10.3390/life10090186 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nouemssi, Serge Basile Ghribi, Manel Beauchemin, Rémy Meddeb-Mouelhi, Fatma Germain, Hugo Desgagné-Penix, Isabel Rapid and Efficient Colony-PCR for High Throughput Screening of Genetically Transformed Chlamydomonas reinhardtii |
title | Rapid and Efficient Colony-PCR for High Throughput Screening of Genetically Transformed Chlamydomonas reinhardtii |
title_full | Rapid and Efficient Colony-PCR for High Throughput Screening of Genetically Transformed Chlamydomonas reinhardtii |
title_fullStr | Rapid and Efficient Colony-PCR for High Throughput Screening of Genetically Transformed Chlamydomonas reinhardtii |
title_full_unstemmed | Rapid and Efficient Colony-PCR for High Throughput Screening of Genetically Transformed Chlamydomonas reinhardtii |
title_short | Rapid and Efficient Colony-PCR for High Throughput Screening of Genetically Transformed Chlamydomonas reinhardtii |
title_sort | rapid and efficient colony-pcr for high throughput screening of genetically transformed chlamydomonas reinhardtii |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554959/ https://www.ncbi.nlm.nih.gov/pubmed/32927613 http://dx.doi.org/10.3390/life10090186 |
work_keys_str_mv | AT nouemssisergebasile rapidandefficientcolonypcrforhighthroughputscreeningofgeneticallytransformedchlamydomonasreinhardtii AT ghribimanel rapidandefficientcolonypcrforhighthroughputscreeningofgeneticallytransformedchlamydomonasreinhardtii AT beaucheminremy rapidandefficientcolonypcrforhighthroughputscreeningofgeneticallytransformedchlamydomonasreinhardtii AT meddebmouelhifatma rapidandefficientcolonypcrforhighthroughputscreeningofgeneticallytransformedchlamydomonasreinhardtii AT germainhugo rapidandefficientcolonypcrforhighthroughputscreeningofgeneticallytransformedchlamydomonasreinhardtii AT desgagnepenixisabel rapidandefficientcolonypcrforhighthroughputscreeningofgeneticallytransformedchlamydomonasreinhardtii |