Cargando…

The neural basis of metacognitive monitoring during arithmetic in the developing brain

In contrast to a substantial body of research on the neural basis of cognitive performance in several academic domains, less is known about how the brain generates metacognitive (MC) awareness of such performance. The existing work on the neurobiological underpinnings of metacognition has almost exc...

Descripción completa

Detalles Bibliográficos
Autores principales: Bellon, Elien, Fias, Wim, Ansari, Daniel, De Smedt, Bert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555088/
https://www.ncbi.nlm.nih.gov/pubmed/32701218
http://dx.doi.org/10.1002/hbm.25142
Descripción
Sumario:In contrast to a substantial body of research on the neural basis of cognitive performance in several academic domains, less is known about how the brain generates metacognitive (MC) awareness of such performance. The existing work on the neurobiological underpinnings of metacognition has almost exclusively been done in adults and has largely focused on lower level cognitive processing domains, such as perceptual decision‐making. Extending this body of evidence, we investigated MC monitoring by asking children to solve arithmetic problems, an educationally relevant higher‐order process, while providing concurrent MC reports during fMRI acquisition. Results are reported on 50 primary school children aged 9–10 years old. The current study is the first to demonstrate that brain activity during MC monitoring, relative to the control task, increased in the left inferior frontal gyrus in children. This brain activity further correlated with children's arithmetic development over a 3‐year time period. These data are in line with the frequently suggested, yet never empirically tested, hypothesis that activity in the prefrontal cortex during arithmetic is related to the higher‐order process of MC monitoring.