Cargando…
G Protein-Coupled Estrogen Receptor Mediates Cell Proliferation through the cAMP/PKA/CREB Pathway in Murine Bone Marrow Mesenchymal Stem Cells
Estrogen is an important hormone to regulate skeletal physiology via estrogen receptors. The traditional estrogen receptors are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ. Moreover, G protein-coupled estrogen receptor-1 (GPER-1) was reported as a membrane receptor for estrogen in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555423/ https://www.ncbi.nlm.nih.gov/pubmed/32899453 http://dx.doi.org/10.3390/ijms21186490 |
_version_ | 1783594004488650752 |
---|---|
author | Chuang, Shu-Chun Chen, Chung-Hwan Chou, Ya-Shuan Ho, Mei-Ling Chang, Je-Ken |
author_facet | Chuang, Shu-Chun Chen, Chung-Hwan Chou, Ya-Shuan Ho, Mei-Ling Chang, Je-Ken |
author_sort | Chuang, Shu-Chun |
collection | PubMed |
description | Estrogen is an important hormone to regulate skeletal physiology via estrogen receptors. The traditional estrogen receptors are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ. Moreover, G protein-coupled estrogen receptor-1 (GPER-1) was reported as a membrane receptor for estrogen in recent years. However, whether GPER-1 regulated osteogenic cell biology on skeletal system is still unclear. GPER-1 is expressed in growth plate abundantly before puberty but decreased abruptly since the very late stage of puberty in humans. It indicates GPER-1 might play an important role in skeletal growth regulation. GPER-1 expression has been confirmed in osteoblasts, osteocytes and chondrocytes, but its expression in mesenchymal stem cells (MSCs) has not been confirmed. In this study, we hypothesized that GPER-1 is expressed in bone MSCs (BMSC) and enhances BMSC proliferation. The cultured tibiae of neonatal rat and murine BMSCs were tested in our study. GPER-1-specific agonist (G-1) and antagonist (G-15), and GPER-1 siRNA (siGPER-1) were used to evaluate the downstream signaling pathway and cell proliferation. Our results revealed BrdU-positive cell counts were higher in cultured tibiae in the G-1 group. The G-1 also enhanced the cell viability and proliferation, whereas G-15 and siGPER-1 reduced these activities. The cAMP and phosphorylation of CREB were enhanced by G-1 but inhibited by G-15. We further demonstrated that GPER-1 mediates BMSC proliferation via the cAMP/PKA/p-CREB pathway and subsequently upregulates cell cycle regulators, cyclin D1/cyclin-dependent kinase (CDK) 6 and cyclin E1/CDK2 complex. The present study is the first to report that GPER-1 mediates BMSC proliferation. This finding indicates that GPER-1 mediated signaling positively regulates BMSC proliferation and may provide novel insights into addressing estrogen-mediated bone development. |
format | Online Article Text |
id | pubmed-7555423 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75554232020-10-19 G Protein-Coupled Estrogen Receptor Mediates Cell Proliferation through the cAMP/PKA/CREB Pathway in Murine Bone Marrow Mesenchymal Stem Cells Chuang, Shu-Chun Chen, Chung-Hwan Chou, Ya-Shuan Ho, Mei-Ling Chang, Je-Ken Int J Mol Sci Article Estrogen is an important hormone to regulate skeletal physiology via estrogen receptors. The traditional estrogen receptors are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ. Moreover, G protein-coupled estrogen receptor-1 (GPER-1) was reported as a membrane receptor for estrogen in recent years. However, whether GPER-1 regulated osteogenic cell biology on skeletal system is still unclear. GPER-1 is expressed in growth plate abundantly before puberty but decreased abruptly since the very late stage of puberty in humans. It indicates GPER-1 might play an important role in skeletal growth regulation. GPER-1 expression has been confirmed in osteoblasts, osteocytes and chondrocytes, but its expression in mesenchymal stem cells (MSCs) has not been confirmed. In this study, we hypothesized that GPER-1 is expressed in bone MSCs (BMSC) and enhances BMSC proliferation. The cultured tibiae of neonatal rat and murine BMSCs were tested in our study. GPER-1-specific agonist (G-1) and antagonist (G-15), and GPER-1 siRNA (siGPER-1) were used to evaluate the downstream signaling pathway and cell proliferation. Our results revealed BrdU-positive cell counts were higher in cultured tibiae in the G-1 group. The G-1 also enhanced the cell viability and proliferation, whereas G-15 and siGPER-1 reduced these activities. The cAMP and phosphorylation of CREB were enhanced by G-1 but inhibited by G-15. We further demonstrated that GPER-1 mediates BMSC proliferation via the cAMP/PKA/p-CREB pathway and subsequently upregulates cell cycle regulators, cyclin D1/cyclin-dependent kinase (CDK) 6 and cyclin E1/CDK2 complex. The present study is the first to report that GPER-1 mediates BMSC proliferation. This finding indicates that GPER-1 mediated signaling positively regulates BMSC proliferation and may provide novel insights into addressing estrogen-mediated bone development. MDPI 2020-09-05 /pmc/articles/PMC7555423/ /pubmed/32899453 http://dx.doi.org/10.3390/ijms21186490 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chuang, Shu-Chun Chen, Chung-Hwan Chou, Ya-Shuan Ho, Mei-Ling Chang, Je-Ken G Protein-Coupled Estrogen Receptor Mediates Cell Proliferation through the cAMP/PKA/CREB Pathway in Murine Bone Marrow Mesenchymal Stem Cells |
title | G Protein-Coupled Estrogen Receptor Mediates Cell Proliferation through the cAMP/PKA/CREB Pathway in Murine Bone Marrow Mesenchymal Stem Cells |
title_full | G Protein-Coupled Estrogen Receptor Mediates Cell Proliferation through the cAMP/PKA/CREB Pathway in Murine Bone Marrow Mesenchymal Stem Cells |
title_fullStr | G Protein-Coupled Estrogen Receptor Mediates Cell Proliferation through the cAMP/PKA/CREB Pathway in Murine Bone Marrow Mesenchymal Stem Cells |
title_full_unstemmed | G Protein-Coupled Estrogen Receptor Mediates Cell Proliferation through the cAMP/PKA/CREB Pathway in Murine Bone Marrow Mesenchymal Stem Cells |
title_short | G Protein-Coupled Estrogen Receptor Mediates Cell Proliferation through the cAMP/PKA/CREB Pathway in Murine Bone Marrow Mesenchymal Stem Cells |
title_sort | g protein-coupled estrogen receptor mediates cell proliferation through the camp/pka/creb pathway in murine bone marrow mesenchymal stem cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555423/ https://www.ncbi.nlm.nih.gov/pubmed/32899453 http://dx.doi.org/10.3390/ijms21186490 |
work_keys_str_mv | AT chuangshuchun gproteincoupledestrogenreceptormediatescellproliferationthroughthecamppkacrebpathwayinmurinebonemarrowmesenchymalstemcells AT chenchunghwan gproteincoupledestrogenreceptormediatescellproliferationthroughthecamppkacrebpathwayinmurinebonemarrowmesenchymalstemcells AT chouyashuan gproteincoupledestrogenreceptormediatescellproliferationthroughthecamppkacrebpathwayinmurinebonemarrowmesenchymalstemcells AT homeiling gproteincoupledestrogenreceptormediatescellproliferationthroughthecamppkacrebpathwayinmurinebonemarrowmesenchymalstemcells AT changjeken gproteincoupledestrogenreceptormediatescellproliferationthroughthecamppkacrebpathwayinmurinebonemarrowmesenchymalstemcells |