Cargando…
Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer
BACKGROUND: Radiogenomics is an emerging field that integrates “Radiomics” and “Genomics”. In the current study, we aimed to predict the genetic information of pancreatic tumours in a simple, inexpensive, and non-invasive manner, using cancer imaging analysis and radiogenomics. We focused on p53 mut...
Autores principales: | Iwatate, Yosuke, Hoshino, Isamu, Yokota, Hajime, Ishige, Fumitaka, Itami, Makiko, Mori, Yasukuni, Chiba, Satoshi, Arimitsu, Hidehito, Yanagibashi, Hiroo, Nagase, Hiroki, Takayama, Wataru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555500/ https://www.ncbi.nlm.nih.gov/pubmed/32690867 http://dx.doi.org/10.1038/s41416-020-0997-1 |
Ejemplares similares
-
MIR1246 in body fluids as a biomarker for pancreatic cancer
por: Ishige, Fumitaka, et al.
Publicado: (2020) -
Machine learning with imaging features to predict the expression of ITGAV, which is a poor prognostic factor derived from transcriptome analysis in pancreatic cancer
por: Iwatate, Yosuke, et al.
Publicado: (2022) -
Transcriptomic analysis reveals high ITGB1 expression as a predictor for poor prognosis of pancreatic cancer
por: Iwatate, Yosuke, et al.
Publicado: (2022) -
Prediction of the differences in tumor mutation burden between primary and metastatic lesions by radiogenomics
por: Hoshino, Isamu, et al.
Publicado: (2021) -
Radiogenomics predicts the expression of microRNA-1246 in the serum of esophageal cancer patients
por: Hoshino, Isamu, et al.
Publicado: (2020)