Cargando…
Machine Learning Facilitates Hotspot Classification in PSMA-PET/CT with Nuclear Medicine Specialist Accuracy
Gallium-68 prostate-specific membrane antigen positron emission tomography ((68)Ga-PSMA-PET) is a highly sensitive method to detect prostate cancer (PC) metastases. Visual discrimination between malignant and physiologic/unspecific tracer accumulation by a nuclear medicine (NM) specialist is essenti...
Autores principales: | Moazemi, Sobhan, Khurshid, Zain, Erle, Annette, Lütje, Susanne, Essler, Markus, Schultz, Thomas, Bundschuh, Ralph A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555620/ https://www.ncbi.nlm.nih.gov/pubmed/32842599 http://dx.doi.org/10.3390/diagnostics10090622 |
Ejemplares similares
-
Decision-support for treatment with (177)Lu-PSMA: machine learning predicts response with high accuracy based on PSMA-PET/CT and clinical parameters
por: Moazemi, Sobhan, et al.
Publicado: (2021) -
Evaluating a Machine Learning Tool for the Classification of Pathological Uptake in Whole-Body PSMA-PET-CT Scans
por: Erle, Annette, et al.
Publicado: (2021) -
Estimating the Potential of Radiomics Features and Radiomics Signature from Pretherapeutic PSMA-PET-CT Scans and Clinical Data for Prediction of Overall Survival When Treated with (177)Lu-PSMA
por: Moazemi, Sobhan, et al.
Publicado: (2021) -
High Interobserver Agreement on PSMA PET/CT Even in the Absence of Clinical Data
por: Bundschuh, Ralph A., et al.
Publicado: (2023) -
Role of textural heterogeneity parameters in patient selection for 177Lu-PSMA therapy via response prediction
por: Khurshid, Zain, et al.
Publicado: (2018)