Cargando…
Spatial Distribution of Noise Reduction in Four Iterative Reconstruction Algorithms in CT—A Technical Evaluation
Iterative reconstruction (IR) is a computed tomgraphy (CT) reconstruction algorithm aiming at improving image quality by reducing noise in the image. During this process, IR also changes the noise properties in the images. To assess how IR algorithms from four vendors affect the noise properties in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555695/ https://www.ncbi.nlm.nih.gov/pubmed/32872274 http://dx.doi.org/10.3390/diagnostics10090647 |
_version_ | 1783594067392724992 |
---|---|
author | Guleng, Anette Bolstad, Kirsten Dalehaug, Ingvild Flatabø, Silje Aadnevik, Daniel Pettersen, Helge E. S. |
author_facet | Guleng, Anette Bolstad, Kirsten Dalehaug, Ingvild Flatabø, Silje Aadnevik, Daniel Pettersen, Helge E. S. |
author_sort | Guleng, Anette |
collection | PubMed |
description | Iterative reconstruction (IR) is a computed tomgraphy (CT) reconstruction algorithm aiming at improving image quality by reducing noise in the image. During this process, IR also changes the noise properties in the images. To assess how IR algorithms from four vendors affect the noise properties in CT images, an anthropomorphic phantom was scanned and images reconstructed with filtered back projection (FBP), and a medium and high level of IR. Each image acquisition was performed 30 times at the same slice position, to create noise maps showing the inter-image pixel standard deviation through the 30 images. We observed that IR changed the noise properties in the CT images by reducing noise more in homogeneous areas than at anatomical edges between structures of different densities. This difference increased with increasing IR level, and with increasing difference in density between two adjacent structures. Each vendor’s IR algorithm showed slightly different noise reduction properties in how much noise was reduced at different positions in the phantom. Users need to be aware of these differences when working with optimization of protocols using IR across scanners from different vendors. |
format | Online Article Text |
id | pubmed-7555695 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75556952020-10-19 Spatial Distribution of Noise Reduction in Four Iterative Reconstruction Algorithms in CT—A Technical Evaluation Guleng, Anette Bolstad, Kirsten Dalehaug, Ingvild Flatabø, Silje Aadnevik, Daniel Pettersen, Helge E. S. Diagnostics (Basel) Article Iterative reconstruction (IR) is a computed tomgraphy (CT) reconstruction algorithm aiming at improving image quality by reducing noise in the image. During this process, IR also changes the noise properties in the images. To assess how IR algorithms from four vendors affect the noise properties in CT images, an anthropomorphic phantom was scanned and images reconstructed with filtered back projection (FBP), and a medium and high level of IR. Each image acquisition was performed 30 times at the same slice position, to create noise maps showing the inter-image pixel standard deviation through the 30 images. We observed that IR changed the noise properties in the CT images by reducing noise more in homogeneous areas than at anatomical edges between structures of different densities. This difference increased with increasing IR level, and with increasing difference in density between two adjacent structures. Each vendor’s IR algorithm showed slightly different noise reduction properties in how much noise was reduced at different positions in the phantom. Users need to be aware of these differences when working with optimization of protocols using IR across scanners from different vendors. MDPI 2020-08-28 /pmc/articles/PMC7555695/ /pubmed/32872274 http://dx.doi.org/10.3390/diagnostics10090647 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guleng, Anette Bolstad, Kirsten Dalehaug, Ingvild Flatabø, Silje Aadnevik, Daniel Pettersen, Helge E. S. Spatial Distribution of Noise Reduction in Four Iterative Reconstruction Algorithms in CT—A Technical Evaluation |
title | Spatial Distribution of Noise Reduction in Four Iterative Reconstruction Algorithms in CT—A Technical Evaluation |
title_full | Spatial Distribution of Noise Reduction in Four Iterative Reconstruction Algorithms in CT—A Technical Evaluation |
title_fullStr | Spatial Distribution of Noise Reduction in Four Iterative Reconstruction Algorithms in CT—A Technical Evaluation |
title_full_unstemmed | Spatial Distribution of Noise Reduction in Four Iterative Reconstruction Algorithms in CT—A Technical Evaluation |
title_short | Spatial Distribution of Noise Reduction in Four Iterative Reconstruction Algorithms in CT—A Technical Evaluation |
title_sort | spatial distribution of noise reduction in four iterative reconstruction algorithms in ct—a technical evaluation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555695/ https://www.ncbi.nlm.nih.gov/pubmed/32872274 http://dx.doi.org/10.3390/diagnostics10090647 |
work_keys_str_mv | AT gulenganette spatialdistributionofnoisereductioninfouriterativereconstructionalgorithmsinctatechnicalevaluation AT bolstadkirsten spatialdistributionofnoisereductioninfouriterativereconstructionalgorithmsinctatechnicalevaluation AT dalehaugingvild spatialdistributionofnoisereductioninfouriterativereconstructionalgorithmsinctatechnicalevaluation AT flatabøsilje spatialdistributionofnoisereductioninfouriterativereconstructionalgorithmsinctatechnicalevaluation AT aadnevikdaniel spatialdistributionofnoisereductioninfouriterativereconstructionalgorithmsinctatechnicalevaluation AT pettersenhelgees spatialdistributionofnoisereductioninfouriterativereconstructionalgorithmsinctatechnicalevaluation |