Cargando…
Optimization of Deep Learning Network Parameters Using Uniform Experimental Design for Breast Cancer Histopathological Image Classification
Breast cancer, a common cancer type, is a major health concern in women. Recently, researchers used convolutional neural networks (CNNs) for medical image analysis and demonstrated classification performance for breast cancer diagnosis from within histopathological image datasets. However, the param...
Autores principales: | Lin, Cheng-Jian, Jeng, Shiou-Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555941/ https://www.ncbi.nlm.nih.gov/pubmed/32882935 http://dx.doi.org/10.3390/diagnostics10090662 |
Ejemplares similares
-
Enhanced Pelican Optimization Algorithm with Deep Learning-Driven Mitotic Nuclei Classification on Breast Histopathology Images
por: Alrowais, Fadwa, et al.
Publicado: (2023) -
Classification of Multiclass Histopathological Breast Images Using Residual Deep Learning
por: Eltoukhy, Mohamed Meselhy, et al.
Publicado: (2022) -
Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models
por: Hameed, Zabit, et al.
Publicado: (2020) -
Deep Learning on Histopathology Images for Breast Cancer Classification: A Bibliometric Analysis
por: Khairi, Siti Shaliza Mohd, et al.
Publicado: (2021) -
Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model
por: Han, Zhongyi, et al.
Publicado: (2017)