Cargando…
Penalized Quadratic Inference Function-Based Variable Selection for Generalized Partially Linear Varying Coefficient Models with Longitudinal Data
Semiparametric generalized varying coefficient partially linear models with longitudinal data arise in contemporary biology, medicine, and life science. In this paper, we consider a variable selection procedure based on the combination of the basis function approximations and quadratic inference fun...
Autores principales: | Zhang, Jinghua, Xue, Liugen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556090/ https://www.ncbi.nlm.nih.gov/pubmed/33082838 http://dx.doi.org/10.1155/2020/3505306 |
Ejemplares similares
-
Longitudinal data analysis for rare variants detection with penalized quadratic inference function
por: Cao, Hongyan, et al.
Publicado: (2017) -
Multivariate partial linear varying coefficients model for gene‐environment interactions with multiple longitudinal traits
por: Wang, Honglang, et al.
Publicado: (2022) -
The Quadratic Coefficient of the Electron Cloud Mapping
por: Petracca, S, et al.
Publicado: (2013) -
Linear-quadratic control : an introduction
por: Dorato, Peter
Publicado: (1995) -
Generalized Linear Quadratic Control for a Full Tracking Problem in Aviation
por: Dul, Franciszek, et al.
Publicado: (2020)