Cargando…
Federated Ensemble Regression Using Classification
Ensemble learning has been shown to significantly improve predictive accuracy in a variety of machine learning problems. For a given predictive task, the goal of ensemble learning is to improve predictive accuracy by combining the predictive power of multiple models. In this paper, we present an ens...
Autores principales: | Orhobor, Oghenejokpeme I., Soldatova, Larisa N., King, Ross D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556384/ http://dx.doi.org/10.1007/978-3-030-61527-7_22 |
Ejemplares similares
-
Generating Explainable and Effective Data Descriptors Using Relational Learning: Application to Cancer Biology
por: Orhobor, Oghenejokpeme I., et al.
Publicado: (2020) -
Transformational machine learning: Learning how to learn from many related scientific problems
por: Olier, Ivan, et al.
Publicado: (2021) -
An evaluation of machine-learning for predicting phenotype: studies in yeast, rice, and wheat
por: Grinberg, Nastasiya F., et al.
Publicado: (2019) -
Batched Bayesian
Optimization for Drug Design in Noisy
Environments
por: Bellamy, Hugo, et al.
Publicado: (2022) -
A simple spatial extension to the extended connectivity interaction features for binding affinity prediction
por: Orhobor, Oghenejokpeme I., et al.
Publicado: (2022)