Cargando…
Pathway Activity Score Learning for Dimensionality Reduction of Gene Expression Data
Molecular gene-expression datasets consist of samples with tens of thousands of measured quantities (e.g., high dimensional data). However, there exist lower-dimensional representations that retain the useful information. We present a novel algorithm for such dimensionality reduction called Pathway...
Autores principales: | Karagiannaki, Ioulia, Pantazis, Yannis, Chatzaki, Ekaterini, Tsamardinos, Ioannis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556388/ http://dx.doi.org/10.1007/978-3-030-61527-7_17 |
Ejemplares similares
-
Learning biologically-interpretable latent representations for gene expression data: Pathway Activity Score Learning Algorithm
por: Karagiannaki, Ioulia, et al.
Publicado: (2022) -
Somatic copy number aberrations detected in circulating tumor DNA can hold diagnostic value for early detection of hepatocellular carcinoma
por: Chatzaki, Ekaterini, et al.
Publicado: (2020) -
Accurate Blood-Based Diagnostic Biosignatures for Alzheimer’s Disease via Automated Machine Learning
por: Karaglani, Makrina, et al.
Publicado: (2020) -
Deciphering the Methylation Landscape in Breast Cancer: Diagnostic and Prognostic Biosignatures through Automated Machine Learning
por: Panagopoulou, Maria, et al.
Publicado: (2021) -
A unified approach for sparse dynamical system inference from temporal measurements
por: Pantazis, Yannis, et al.
Publicado: (2019)