Cargando…
Data‐driven discovery of probable Alzheimer's disease and related dementia subphenotypes using electronic health records
INTRODUCTION: We sought to assess longitudinal electronic health records (EHRs) using machine learning (ML) methods to computationally derive probable Alzheimer's Disease (AD) and related dementia subphenotypes. METHODS: A retrospective analysis of EHR data from a cohort of 7587 patients seen a...
Autores principales: | Xu, Jie, Wang, Fei, Xu, Zhenxing, Adekkanattu, Prakash, Brandt, Pascal, Jiang, Guoqian, Kiefer, Richard C., Luo, Yuan, Mao, Chengsheng, Pacheco, Jennifer A., Rasmussen, Luke V., Zhang, Yiye, Isaacson, Richard, Pathak, Jyotishman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556420/ https://www.ncbi.nlm.nih.gov/pubmed/33083543 http://dx.doi.org/10.1002/lrh2.10246 |
Ejemplares similares
-
Subphenotyping depression using machine learning and electronic health records
por: Xu, Zhenxing, et al.
Publicado: (2020) -
Comparing the effects of four common drug classes on the progression of mild cognitive impairment to dementia using electronic health records
por: Xu, Jie, et al.
Publicado: (2023) -
Toward cross‐platform electronic health record‐driven phenotyping using Clinical Quality Language
por: Brandt, Pascal S., et al.
Publicado: (2020) -
Stratified Mortality Prediction of Patients with Acute Kidney Injury in Critical Care
por: Xu, Zhenxing, et al.
Publicado: (2019) -
Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study
por: Adekkanattu, Prakash, et al.
Publicado: (2023)