Cargando…
Subphenotyping depression using machine learning and electronic health records
OBJECTIVE: To identify depression subphenotypes from Electronic Health Records (EHRs) using machine learning methods, and analyze their characteristics with respect to patient demographics, comorbidities, and medications. MATERIALS AND METHODS: Using EHRs from the INSIGHT Clinical Research Network (...
Autores principales: | Xu, Zhenxing, Wang, Fei, Adekkanattu, Prakash, Bose, Budhaditya, Vekaria, Veer, Brandt, Pascal, Jiang, Guoqian, Kiefer, Richard C., Luo, Yuan, Pacheco, Jennifer A., Rasmussen, Luke V., Xu, Jie, Alexopoulos, George, Pathak, Jyotishman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556423/ https://www.ncbi.nlm.nih.gov/pubmed/33083540 http://dx.doi.org/10.1002/lrh2.10241 |
Ejemplares similares
-
Data‐driven discovery of probable Alzheimer's disease and related dementia subphenotypes using electronic health records
por: Xu, Jie, et al.
Publicado: (2020) -
Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study
por: Adekkanattu, Prakash, et al.
Publicado: (2023) -
Toward cross‐platform electronic health record‐driven phenotyping using Clinical Quality Language
por: Brandt, Pascal S., et al.
Publicado: (2020) -
Stratified Mortality Prediction of Patients with Acute Kidney Injury in Critical Care
por: Xu, Zhenxing, et al.
Publicado: (2019) -
Association of co-occurring opioid or other substance use disorders with increased healthcare utilization in patients with depression
por: Vekaria, Veer, et al.
Publicado: (2021)