Cargando…
Analyzing the fine structure of distributions
One aim of data mining is the identification of interesting structures in data. For better analytical results, the basic properties of an empirical distribution, such as skewness and eventual clipping, i.e. hard limits in value ranges, need to be assessed. Of particular interest is the question of w...
Autores principales: | Thrun, Michael C., Gehlert, Tino, Ultsch, Alfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556505/ https://www.ncbi.nlm.nih.gov/pubmed/33052923 http://dx.doi.org/10.1371/journal.pone.0238835 |
Ejemplares similares
-
Uncovering High-dimensional Structures of Projections from Dimensionality Reduction Methods
por: Thrun, Michael C., et al.
Publicado: (2020) -
Clustering benchmark datasets exploiting the fundamental clustering problems
por: Thrun, Michael C., et al.
Publicado: (2020) -
Identification of Molecular Fingerprints in Human Heat Pain Thresholds by Use of an Interactive Mixture Model R Toolbox (AdaptGauss)
por: Ultsch, Alfred, et al.
Publicado: (2015) -
Knowledge discovery from high-frequency stream nitrate concentrations: hydrology and biology contributions
por: Aubert, Alice H., et al.
Publicado: (2016) -
Machine-Learned Data Structures of Lipid Marker Serum Concentrations in Multiple Sclerosis Patients Differ from Those in Healthy Subjects
por: Lötsch, Jörn, et al.
Publicado: (2017)