Cargando…

Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences

Data science has primarily focused on big data, but for many physics, chemistry, and engineering applications, data are often small, correlated and, thus, low dimensional, and sourced from both computations and experiments with various levels of noise. Typical statistics and machine learning methods...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Jinchao, Lansford, Joshua L., Katsoulakis, Markos A., Vlachos, Dionisios G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556836/
https://www.ncbi.nlm.nih.gov/pubmed/33055163
http://dx.doi.org/10.1126/sciadv.abc3204
Descripción
Sumario:Data science has primarily focused on big data, but for many physics, chemistry, and engineering applications, data are often small, correlated and, thus, low dimensional, and sourced from both computations and experiments with various levels of noise. Typical statistics and machine learning methods do not work for these cases. Expert knowledge is essential, but a systematic framework for incorporating it into physics-based models under uncertainty is lacking. Here, we develop a mathematical and computational framework for probabilistic artificial intelligence (AI)–based predictive modeling combining data, expert knowledge, multiscale models, and information theory through uncertainty quantification and probabilistic graphical models (PGMs). We apply PGMs to chemistry specifically and develop predictive guarantees for PGMs generally. Our proposed framework, combining AI and uncertainty quantification, provides explainable results leading to correctable and, eventually, trustworthy models. The proposed framework is demonstrated on a microkinetic model of the oxygen reduction reaction.