Cargando…
Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences
Data science has primarily focused on big data, but for many physics, chemistry, and engineering applications, data are often small, correlated and, thus, low dimensional, and sourced from both computations and experiments with various levels of noise. Typical statistics and machine learning methods...
Autores principales: | Feng, Jinchao, Lansford, Joshua L., Katsoulakis, Markos A., Vlachos, Dionisios G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556836/ https://www.ncbi.nlm.nih.gov/pubmed/33055163 http://dx.doi.org/10.1126/sciadv.abc3204 |
Ejemplares similares
-
Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory
por: Pantazis, Yannis, et al.
Publicado: (2013) -
Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients
por: Prelaj, Arsela, et al.
Publicado: (2023) -
How to achieve trustworthy artificial intelligence for health
por: Bærøe, Kristine, et al.
Publicado: (2020) -
Ethics and governance of trustworthy medical artificial intelligence
por: Zhang, Jie, et al.
Publicado: (2023) -
Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
por: Lansford, Joshua L., et al.
Publicado: (2020)