Cargando…
CoGAPS 3: Bayesian non-negative matrix factorization for single-cell analysis with asynchronous updates and sparse data structures
BACKGROUND: Bayesian factorization methods, including Coordinated Gene Activity in Pattern Sets (CoGAPS), are emerging as powerful analysis tools for single cell data. However, these methods have greater computational costs than their gradient-based counterparts. These costs are often prohibitive fo...
Autores principales: | Sherman, Thomas D., Gao, Tiger, Fertig, Elana J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556974/ https://www.ncbi.nlm.nih.gov/pubmed/33054706 http://dx.doi.org/10.1186/s12859-020-03796-9 |
Ejemplares similares
-
CoGAPS matrix factorization algorithm identifies transcriptional changes in AP-2alpha target genes in feedback from therapeutic inhibition of the EGFR network
por: Fertig, Elana J., et al.
Publicado: (2016) -
Single-cell data clustering based on sparse optimization and low-rank matrix factorization
por: Hu, Yinlei, et al.
Publicado: (2021) -
shinyMethyl: interactive quality control of Illumina 450k DNA methylation arrays in R
por: Fortin, Jean-Philippe, et al.
Publicado: (2014) -
Co-sparse Non-negative Matrix Factorization
por: Wu, Fan, et al.
Publicado: (2022) -
Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data
por: Paulson, Joseph N., et al.
Publicado: (2017)