Cargando…

Cancer predictive studies

The identification of individual or clusters of predictive genetic alterations might help in defining the outcome of cancer treatment, allowing for the stratification of patients into distinct cohorts for selective therapeutic protocols. Neuroblastoma (NB) is the most common extracranial childhood t...

Descripción completa

Detalles Bibliográficos
Autores principales: Amelio, Ivano, Bertolo, Riccardo, Bove, Pierluigi, Candi, Eleonora, Chiocchi, Marcello, Cipriani, Chiara, Di Daniele, Nicola, Ganini, Carlo, Juhl, Hartmut, Mauriello, Alessandro, Marani, Carla, Marshall, John, Montanaro, Manuela, Palmieri, Giampiero, Piacentini, Mauro, Sica, Giuseppe, Tesauro, Manfredi, Rovella, Valentina, Tisone, Giuseppe, Shi, Yufang, Wang, Ying, Melino, Gerry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557058/
https://www.ncbi.nlm.nih.gov/pubmed/33054808
http://dx.doi.org/10.1186/s13062-020-00274-3
_version_ 1783594337852981248
author Amelio, Ivano
Bertolo, Riccardo
Bove, Pierluigi
Candi, Eleonora
Chiocchi, Marcello
Cipriani, Chiara
Di Daniele, Nicola
Ganini, Carlo
Juhl, Hartmut
Mauriello, Alessandro
Marani, Carla
Marshall, John
Montanaro, Manuela
Palmieri, Giampiero
Piacentini, Mauro
Sica, Giuseppe
Tesauro, Manfredi
Rovella, Valentina
Tisone, Giuseppe
Shi, Yufang
Wang, Ying
Melino, Gerry
author_facet Amelio, Ivano
Bertolo, Riccardo
Bove, Pierluigi
Candi, Eleonora
Chiocchi, Marcello
Cipriani, Chiara
Di Daniele, Nicola
Ganini, Carlo
Juhl, Hartmut
Mauriello, Alessandro
Marani, Carla
Marshall, John
Montanaro, Manuela
Palmieri, Giampiero
Piacentini, Mauro
Sica, Giuseppe
Tesauro, Manfredi
Rovella, Valentina
Tisone, Giuseppe
Shi, Yufang
Wang, Ying
Melino, Gerry
author_sort Amelio, Ivano
collection PubMed
description The identification of individual or clusters of predictive genetic alterations might help in defining the outcome of cancer treatment, allowing for the stratification of patients into distinct cohorts for selective therapeutic protocols. Neuroblastoma (NB) is the most common extracranial childhood tumour, clinically defined in five distinct stages (1–4 & 4S), where stages 3–4 define chemotherapy-resistant, highly aggressive disease phases. NB is a model for geneticists and molecular biologists to classify genetic abnormalities and identify causative disease genes. Despite highly intensive basic research, improvements on clinical outcome have been predominantly observed for less aggressive cancers, that is stages 1,2 and 4S. Therefore, stages 3–4 NB are still complicated at the therapeutic level and require more intense fundamental research. Using neuroblastoma as a model system, here we herein outline how cancer prediction studies can help at steering preclinical and clinical research toward the identification and exploitation of specific genetic landscape. This might result in maximising the therapeutic success and minimizing harmful effects in cancer patients.
format Online
Article
Text
id pubmed-7557058
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-75570582020-10-15 Cancer predictive studies Amelio, Ivano Bertolo, Riccardo Bove, Pierluigi Candi, Eleonora Chiocchi, Marcello Cipriani, Chiara Di Daniele, Nicola Ganini, Carlo Juhl, Hartmut Mauriello, Alessandro Marani, Carla Marshall, John Montanaro, Manuela Palmieri, Giampiero Piacentini, Mauro Sica, Giuseppe Tesauro, Manfredi Rovella, Valentina Tisone, Giuseppe Shi, Yufang Wang, Ying Melino, Gerry Biol Direct Review The identification of individual or clusters of predictive genetic alterations might help in defining the outcome of cancer treatment, allowing for the stratification of patients into distinct cohorts for selective therapeutic protocols. Neuroblastoma (NB) is the most common extracranial childhood tumour, clinically defined in five distinct stages (1–4 & 4S), where stages 3–4 define chemotherapy-resistant, highly aggressive disease phases. NB is a model for geneticists and molecular biologists to classify genetic abnormalities and identify causative disease genes. Despite highly intensive basic research, improvements on clinical outcome have been predominantly observed for less aggressive cancers, that is stages 1,2 and 4S. Therefore, stages 3–4 NB are still complicated at the therapeutic level and require more intense fundamental research. Using neuroblastoma as a model system, here we herein outline how cancer prediction studies can help at steering preclinical and clinical research toward the identification and exploitation of specific genetic landscape. This might result in maximising the therapeutic success and minimizing harmful effects in cancer patients. BioMed Central 2020-10-14 /pmc/articles/PMC7557058/ /pubmed/33054808 http://dx.doi.org/10.1186/s13062-020-00274-3 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Review
Amelio, Ivano
Bertolo, Riccardo
Bove, Pierluigi
Candi, Eleonora
Chiocchi, Marcello
Cipriani, Chiara
Di Daniele, Nicola
Ganini, Carlo
Juhl, Hartmut
Mauriello, Alessandro
Marani, Carla
Marshall, John
Montanaro, Manuela
Palmieri, Giampiero
Piacentini, Mauro
Sica, Giuseppe
Tesauro, Manfredi
Rovella, Valentina
Tisone, Giuseppe
Shi, Yufang
Wang, Ying
Melino, Gerry
Cancer predictive studies
title Cancer predictive studies
title_full Cancer predictive studies
title_fullStr Cancer predictive studies
title_full_unstemmed Cancer predictive studies
title_short Cancer predictive studies
title_sort cancer predictive studies
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557058/
https://www.ncbi.nlm.nih.gov/pubmed/33054808
http://dx.doi.org/10.1186/s13062-020-00274-3
work_keys_str_mv AT amelioivano cancerpredictivestudies
AT bertoloriccardo cancerpredictivestudies
AT bovepierluigi cancerpredictivestudies
AT candieleonora cancerpredictivestudies
AT chiocchimarcello cancerpredictivestudies
AT ciprianichiara cancerpredictivestudies
AT didanielenicola cancerpredictivestudies
AT ganinicarlo cancerpredictivestudies
AT juhlhartmut cancerpredictivestudies
AT maurielloalessandro cancerpredictivestudies
AT maranicarla cancerpredictivestudies
AT marshalljohn cancerpredictivestudies
AT montanaromanuela cancerpredictivestudies
AT palmierigiampiero cancerpredictivestudies
AT piacentinimauro cancerpredictivestudies
AT sicagiuseppe cancerpredictivestudies
AT tesauromanfredi cancerpredictivestudies
AT rovellavalentina cancerpredictivestudies
AT tisonegiuseppe cancerpredictivestudies
AT shiyufang cancerpredictivestudies
AT wangying cancerpredictivestudies
AT melinogerry cancerpredictivestudies