Cargando…
Mathematical model of Boltzmann’s sigmoidal equation applicable to the spreading of the coronavirus (Covid-19) waves
Currently, investigations are intensively conducted on modeling, forecasting, and studying the dynamic spread of coronavirus (Covid-19) new pandemic. In the present work, the sigmoidal-Boltzmann mathematical model was applied to study the Covid-19 spread in 15 different countries. The cumulative num...
Autores principales: | El Aferni, Ahmed, Guettari, Moez, Tajouri, Tahar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557153/ https://www.ncbi.nlm.nih.gov/pubmed/33058082 http://dx.doi.org/10.1007/s11356-020-11188-y |
Ejemplares similares
-
UVC disinfection robot
por: Guettari, Moez, et al.
Publicado: (2020) -
COVID-19 multiwaves as multiphase percolation: a general N-sigmoidal equation to model the spread
por: El Aferni, Ahmed, et al.
Publicado: (2023) -
The effect of weather data on the spread of COVID-19 in Jordan
por: Abdelhafez, Eman, et al.
Publicado: (2021) -
Role of knowledge, behavior, norms, and e-guidelines in controlling the spread of COVID-19: evidence from Pakistan
por: Raza, Ali, et al.
Publicado: (2020) -
COVID-19 pandemic: environmental and social factors influencing the spread of SARS-CoV-2 in São Paulo, Brazil
por: Nakada, Liane Yuri Kondo, et al.
Publicado: (2020)