Cargando…
Coal Classification Method Based on Improved Local Receptive Field-Based Extreme Learning Machine Algorithm and Visible–Infrared Spectroscopy
[Image: see text] In the process of using coal, if the type of coal cannot be accurately determined, it will have a significant impact on production efficiency, environmental pollution, and economic loss. At present, the traditional classification method of coal mainly relies on technician’s experie...
Autores principales: | Xiao, Dong, Li, Hongzong, Sun, Xiaoyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557221/ https://www.ncbi.nlm.nih.gov/pubmed/33073102 http://dx.doi.org/10.1021/acsomega.0c03069 |
Ejemplares similares
-
Coal Classification
Based on Reflection Spectroscopy
and the IAT-TELM Algorithm
por: Li, Boyan, et al.
Publicado: (2023) -
Application of visible and near-infrared spectroscopy to classification of Miscanthus species
por: Jin, Xiaoli, et al.
Publicado: (2017) -
Rapidly detecting fennel origin of the near-infrared spectroscopy based on extreme learning machine
por: Zuo, Enguang, et al.
Publicado: (2022) -
Nondestructive Determination of Diastase Activity of Honey Based on Visible and Near-Infrared Spectroscopy
por: Huang, Zhenxiong, et al.
Publicado: (2019) -
Channel identification machines for multidimensional receptive fields
por: Lazar, Aurel A., et al.
Publicado: (2014)