Cargando…
Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media
Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557590/ https://www.ncbi.nlm.nih.gov/pubmed/32957490 http://dx.doi.org/10.3390/nano10091858 |
_version_ | 1783594454109650944 |
---|---|
author | Heyne, Benjamin Arlt, Kristin Geßner, André Richter, Alexander F. Döblinger, Markus Feldmann, Jochen Taubert, Andreas Wedel, Armin |
author_facet | Heyne, Benjamin Arlt, Kristin Geßner, André Richter, Alexander F. Döblinger, Markus Feldmann, Jochen Taubert, Andreas Wedel, Armin |
author_sort | Heyne, Benjamin |
collection | PubMed |
description | Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34%. |
format | Online Article Text |
id | pubmed-7557590 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75575902020-10-20 Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media Heyne, Benjamin Arlt, Kristin Geßner, André Richter, Alexander F. Döblinger, Markus Feldmann, Jochen Taubert, Andreas Wedel, Armin Nanomaterials (Basel) Article Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34%. MDPI 2020-09-17 /pmc/articles/PMC7557590/ /pubmed/32957490 http://dx.doi.org/10.3390/nano10091858 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Heyne, Benjamin Arlt, Kristin Geßner, André Richter, Alexander F. Döblinger, Markus Feldmann, Jochen Taubert, Andreas Wedel, Armin Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media |
title | Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media |
title_full | Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media |
title_fullStr | Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media |
title_full_unstemmed | Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media |
title_short | Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media |
title_sort | mixed mercaptocarboxylic acid shells provide stable dispersions of inpzns/znse/zns multishell quantum dots in aqueous media |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557590/ https://www.ncbi.nlm.nih.gov/pubmed/32957490 http://dx.doi.org/10.3390/nano10091858 |
work_keys_str_mv | AT heynebenjamin mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia AT arltkristin mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia AT geßnerandre mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia AT richteralexanderf mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia AT doblingermarkus mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia AT feldmannjochen mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia AT taubertandreas mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia AT wedelarmin mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia |