Cargando…

Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media

Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different...

Descripción completa

Detalles Bibliográficos
Autores principales: Heyne, Benjamin, Arlt, Kristin, Geßner, André, Richter, Alexander F., Döblinger, Markus, Feldmann, Jochen, Taubert, Andreas, Wedel, Armin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557590/
https://www.ncbi.nlm.nih.gov/pubmed/32957490
http://dx.doi.org/10.3390/nano10091858
_version_ 1783594454109650944
author Heyne, Benjamin
Arlt, Kristin
Geßner, André
Richter, Alexander F.
Döblinger, Markus
Feldmann, Jochen
Taubert, Andreas
Wedel, Armin
author_facet Heyne, Benjamin
Arlt, Kristin
Geßner, André
Richter, Alexander F.
Döblinger, Markus
Feldmann, Jochen
Taubert, Andreas
Wedel, Armin
author_sort Heyne, Benjamin
collection PubMed
description Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34%.
format Online
Article
Text
id pubmed-7557590
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75575902020-10-20 Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media Heyne, Benjamin Arlt, Kristin Geßner, André Richter, Alexander F. Döblinger, Markus Feldmann, Jochen Taubert, Andreas Wedel, Armin Nanomaterials (Basel) Article Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34%. MDPI 2020-09-17 /pmc/articles/PMC7557590/ /pubmed/32957490 http://dx.doi.org/10.3390/nano10091858 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Heyne, Benjamin
Arlt, Kristin
Geßner, André
Richter, Alexander F.
Döblinger, Markus
Feldmann, Jochen
Taubert, Andreas
Wedel, Armin
Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media
title Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media
title_full Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media
title_fullStr Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media
title_full_unstemmed Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media
title_short Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media
title_sort mixed mercaptocarboxylic acid shells provide stable dispersions of inpzns/znse/zns multishell quantum dots in aqueous media
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557590/
https://www.ncbi.nlm.nih.gov/pubmed/32957490
http://dx.doi.org/10.3390/nano10091858
work_keys_str_mv AT heynebenjamin mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia
AT arltkristin mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia
AT geßnerandre mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia
AT richteralexanderf mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia
AT doblingermarkus mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia
AT feldmannjochen mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia
AT taubertandreas mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia
AT wedelarmin mixedmercaptocarboxylicacidshellsprovidestabledispersionsofinpznsznseznsmultishellquantumdotsinaqueousmedia