Cargando…

Involvement of overweight and lipid metabolism in the development of pulmonary hypertension under conditions of chronic intermittent hypoxia

There is growing evidence that exposure to hypoxia, regardless of the source, elicits several metabolic responses in individuals. These responses are constitutive and are usually observed under hypoxia but vary according to the type of exposure. The aim of this review was to describe the involvement...

Descripción completa

Detalles Bibliográficos
Autores principales: Siques, Patricia, Brito, Julio, Ordenes, Stefany, Pena, Eduardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557786/
https://www.ncbi.nlm.nih.gov/pubmed/33110496
http://dx.doi.org/10.1177/2045894020930626
Descripción
Sumario:There is growing evidence that exposure to hypoxia, regardless of the source, elicits several metabolic responses in individuals. These responses are constitutive and are usually observed under hypoxia but vary according to the type of exposure. The aim of this review was to describe the involvement of obesity and lipid metabolism in the development of high-altitude pulmonary hypertension and in the development of acute mountain sickness under chronic intermittent hypoxia. Overweight or obesity, which are common in individuals with long-term chronic intermittent hypoxia exposure (high-altitude miners, shift workers, and soldiers), are thought to play a major role in the development of acute mountain sickness and high-altitude pulmonary hypertension. This association may be rooted in the interactions between obesity-related metabolic and physical alterations, such as increased waist circumference and neck circumference, among others, which lead to critical ventilation impairments; these impairments aggravate hypoxemia at high altitude, thereby triggering high-altitude diseases. Overweight and obesity are strongly associated with higher mean pulmonary artery pressure in the context of long-term chronic intermittent hypoxia. Remarkably, de novo synthesis of triglycerides by the sterol regulatory element-binding protein-1c pathway has been demonstrated, mainly due to the upregulation of stearoyl-CoA desaturase-1, which is also associated with the same outcomes. Therefore, overweight, obesity, and other metabolic conditions may hinder proper acclimatization. The involved mechanisms include respiratory impairment, alteration of the nitric oxide pathways, inflammatory status, reactive oxygen species imbalance, and other metabolic changes; however, further studies are required.