Cargando…
Driverless artificial intelligence framework for the identification of malignant pleural effusion
Our study aimed to explore the applicability of deep learning and machine learning techniques to distinguish MPE from BPE. We initially used a retrospective cohort with 726 PE patients to train and test the predictive performances of the driverless artificial intelligence (AI), and then stacked with...
Autores principales: | Li, Yuan, Tian, Shan, Huang, Yajun, Dong, Weiguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557891/ https://www.ncbi.nlm.nih.gov/pubmed/33045678 http://dx.doi.org/10.1016/j.tranon.2020.100896 |
Ejemplares similares
-
Differentiation of malignant from benign pleural effusions based on artificial intelligence
por: Wang, Sufei, et al.
Publicado: (2023) -
The Driver in the Driverless Car
por: Wadhwa, Vivek
Publicado: (2019) -
Clinical identification of malignant pleural effusions
por: Jia, Jianlong, et al.
Publicado: (2023) -
Predicting EGFR mutation, ALK rearrangement, and uncommon EGFR mutation in NSCLC patients by driverless artificial intelligence: a cohort study
por: Tan, Xueyun, et al.
Publicado: (2022) -
Clinical characteristics of COVID-19 complicated with pleural effusion
por: Zhan, Na, et al.
Publicado: (2021)