Cargando…
On Aqua-Based Silica (SiO(2)–Water) Nanocoolant: Convective Thermal Potential and Experimental Precision Evaluation in Aluminum Tube Radiator
Although the research on potential use of nanofluids in automotive vehicles is in its embryonic stage, a number of studies have suggested the strong prospect of nanofluids for the efficient thermal management of automotive vehicles. Nevertheless, the pinnacle of nanofluid-based systems awaits stable...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557969/ https://www.ncbi.nlm.nih.gov/pubmed/32882919 http://dx.doi.org/10.3390/nano10091736 |
_version_ | 1783594534391775232 |
---|---|
author | Shah, Tayyab Raza Ali, Hafiz Muhammad Janjua, Muhammad Mansoor |
author_facet | Shah, Tayyab Raza Ali, Hafiz Muhammad Janjua, Muhammad Mansoor |
author_sort | Shah, Tayyab Raza |
collection | PubMed |
description | Although the research on potential use of nanofluids in automotive vehicles is in its embryonic stage, a number of studies have suggested the strong prospect of nanofluids for the efficient thermal management of automotive vehicles. Nevertheless, the pinnacle of nanofluid-based systems awaits stable nanoparticle suspension. The present work studies the heat transfer performance of an aluminum tube automotive radiator with 31 flattened tubes and louvered fins using water and different concentrations (0.04, 0.08, and 0.12 vol.%)-based SiO(2)/water nanofluids as the engine coolant. Inlet temperature and flowrate of the fluid were varied from 60 to 70 °C and 12 to 18 LPM, respectively. The topmost increment in heat transfer rate of 36.92% and Nusselt number of 45.53% were observed in the upper range of tested operational parameters, however, the relative heat transfer increment percentage dropped from 5% (between 0.04 and 0.08 vol.%) to 3.5% (between 0.08 and 0.12 vol.%) due to agglomeration and cluster formation caused by the presence of a greater number of nanoparticles. Precise evaluation of the experimental results was also carried out by reperforming the tests after three days of initial experimentations. A mere deviation of less than 1% was observed between the initial and repeated tests, however, the decline was caused due to the synergistic effects of clustering and fouling. |
format | Online Article Text |
id | pubmed-7557969 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75579692020-10-22 On Aqua-Based Silica (SiO(2)–Water) Nanocoolant: Convective Thermal Potential and Experimental Precision Evaluation in Aluminum Tube Radiator Shah, Tayyab Raza Ali, Hafiz Muhammad Janjua, Muhammad Mansoor Nanomaterials (Basel) Article Although the research on potential use of nanofluids in automotive vehicles is in its embryonic stage, a number of studies have suggested the strong prospect of nanofluids for the efficient thermal management of automotive vehicles. Nevertheless, the pinnacle of nanofluid-based systems awaits stable nanoparticle suspension. The present work studies the heat transfer performance of an aluminum tube automotive radiator with 31 flattened tubes and louvered fins using water and different concentrations (0.04, 0.08, and 0.12 vol.%)-based SiO(2)/water nanofluids as the engine coolant. Inlet temperature and flowrate of the fluid were varied from 60 to 70 °C and 12 to 18 LPM, respectively. The topmost increment in heat transfer rate of 36.92% and Nusselt number of 45.53% were observed in the upper range of tested operational parameters, however, the relative heat transfer increment percentage dropped from 5% (between 0.04 and 0.08 vol.%) to 3.5% (between 0.08 and 0.12 vol.%) due to agglomeration and cluster formation caused by the presence of a greater number of nanoparticles. Precise evaluation of the experimental results was also carried out by reperforming the tests after three days of initial experimentations. A mere deviation of less than 1% was observed between the initial and repeated tests, however, the decline was caused due to the synergistic effects of clustering and fouling. MDPI 2020-09-01 /pmc/articles/PMC7557969/ /pubmed/32882919 http://dx.doi.org/10.3390/nano10091736 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shah, Tayyab Raza Ali, Hafiz Muhammad Janjua, Muhammad Mansoor On Aqua-Based Silica (SiO(2)–Water) Nanocoolant: Convective Thermal Potential and Experimental Precision Evaluation in Aluminum Tube Radiator |
title | On Aqua-Based Silica (SiO(2)–Water) Nanocoolant: Convective Thermal Potential and Experimental Precision Evaluation in Aluminum Tube Radiator |
title_full | On Aqua-Based Silica (SiO(2)–Water) Nanocoolant: Convective Thermal Potential and Experimental Precision Evaluation in Aluminum Tube Radiator |
title_fullStr | On Aqua-Based Silica (SiO(2)–Water) Nanocoolant: Convective Thermal Potential and Experimental Precision Evaluation in Aluminum Tube Radiator |
title_full_unstemmed | On Aqua-Based Silica (SiO(2)–Water) Nanocoolant: Convective Thermal Potential and Experimental Precision Evaluation in Aluminum Tube Radiator |
title_short | On Aqua-Based Silica (SiO(2)–Water) Nanocoolant: Convective Thermal Potential and Experimental Precision Evaluation in Aluminum Tube Radiator |
title_sort | on aqua-based silica (sio(2)–water) nanocoolant: convective thermal potential and experimental precision evaluation in aluminum tube radiator |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557969/ https://www.ncbi.nlm.nih.gov/pubmed/32882919 http://dx.doi.org/10.3390/nano10091736 |
work_keys_str_mv | AT shahtayyabraza onaquabasedsilicasio2waternanocoolantconvectivethermalpotentialandexperimentalprecisionevaluationinaluminumtuberadiator AT alihafizmuhammad onaquabasedsilicasio2waternanocoolantconvectivethermalpotentialandexperimentalprecisionevaluationinaluminumtuberadiator AT janjuamuhammadmansoor onaquabasedsilicasio2waternanocoolantconvectivethermalpotentialandexperimentalprecisionevaluationinaluminumtuberadiator |