Cargando…
Mechanistic Influence of Chemical Agglomeration Agents on Removal of Inhalable Particles from Coal Combustion
[Image: see text] Particle pollution has been a research topic attracting the attention of the researchers around the world because inhalable particles are hazardous to humans and the environment. The major resource of particle pollution is the combustion of coal and biomass. Dust collectors, electr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557991/ https://www.ncbi.nlm.nih.gov/pubmed/33073116 http://dx.doi.org/10.1021/acsomega.0c03263 |
_version_ | 1783594539519311872 |
---|---|
author | Li, Runhao Li, Chengbo Zhuang, Jinyin Zhu, Hongtang Fang, Long Sun, Deshuai |
author_facet | Li, Runhao Li, Chengbo Zhuang, Jinyin Zhu, Hongtang Fang, Long Sun, Deshuai |
author_sort | Li, Runhao |
collection | PubMed |
description | [Image: see text] Particle pollution has been a research topic attracting the attention of the researchers around the world because inhalable particles are hazardous to humans and the environment. The major resource of particle pollution is the combustion of coal and biomass. Dust collectors, electrostatic precipitators, and bag filters are required to remove particles from flue. Because of the large specific surface areas of inhalable particles, they easily agglomerate to form larger aggregates; therefore, improving the capture efficiency of dust collectors is of importance. Herein, chemical agglomeration agents were sprayed into a turbulent agglomeration chamber to improve the removal efficiency of inhalable particles. The results showed that the total removal efficiency of inhalable particles was 59.2% for the three-composition agglomeration agents of kappa carrageenans/Tween-80/NH(4)Cl (KC/TW/NH(4)Cl). The mean particle diameter increased from 2.8 μm before agglomeration to above 10.0 μm after agglomeration. In the agglomeration process, nonionic TW accelerates the wetting properties, in which the polymer, KC, or anion polyacrylamide, promotes prolongation of the contact time between droplets and particles. Two different removal mechanisms are proposed to explain the effect of chemical agglomeration agents. Immersion agglomeration described the agglomeration process of only fine particles, and distribution agglomeration supported the capture of large particles for fine ones in polydispersed aerosols. |
format | Online Article Text |
id | pubmed-7557991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75579912020-10-16 Mechanistic Influence of Chemical Agglomeration Agents on Removal of Inhalable Particles from Coal Combustion Li, Runhao Li, Chengbo Zhuang, Jinyin Zhu, Hongtang Fang, Long Sun, Deshuai ACS Omega [Image: see text] Particle pollution has been a research topic attracting the attention of the researchers around the world because inhalable particles are hazardous to humans and the environment. The major resource of particle pollution is the combustion of coal and biomass. Dust collectors, electrostatic precipitators, and bag filters are required to remove particles from flue. Because of the large specific surface areas of inhalable particles, they easily agglomerate to form larger aggregates; therefore, improving the capture efficiency of dust collectors is of importance. Herein, chemical agglomeration agents were sprayed into a turbulent agglomeration chamber to improve the removal efficiency of inhalable particles. The results showed that the total removal efficiency of inhalable particles was 59.2% for the three-composition agglomeration agents of kappa carrageenans/Tween-80/NH(4)Cl (KC/TW/NH(4)Cl). The mean particle diameter increased from 2.8 μm before agglomeration to above 10.0 μm after agglomeration. In the agglomeration process, nonionic TW accelerates the wetting properties, in which the polymer, KC, or anion polyacrylamide, promotes prolongation of the contact time between droplets and particles. Two different removal mechanisms are proposed to explain the effect of chemical agglomeration agents. Immersion agglomeration described the agglomeration process of only fine particles, and distribution agglomeration supported the capture of large particles for fine ones in polydispersed aerosols. American Chemical Society 2020-09-30 /pmc/articles/PMC7557991/ /pubmed/33073116 http://dx.doi.org/10.1021/acsomega.0c03263 Text en This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Li, Runhao Li, Chengbo Zhuang, Jinyin Zhu, Hongtang Fang, Long Sun, Deshuai Mechanistic Influence of Chemical Agglomeration Agents on Removal of Inhalable Particles from Coal Combustion |
title | Mechanistic Influence of Chemical Agglomeration Agents
on Removal of Inhalable Particles from Coal Combustion |
title_full | Mechanistic Influence of Chemical Agglomeration Agents
on Removal of Inhalable Particles from Coal Combustion |
title_fullStr | Mechanistic Influence of Chemical Agglomeration Agents
on Removal of Inhalable Particles from Coal Combustion |
title_full_unstemmed | Mechanistic Influence of Chemical Agglomeration Agents
on Removal of Inhalable Particles from Coal Combustion |
title_short | Mechanistic Influence of Chemical Agglomeration Agents
on Removal of Inhalable Particles from Coal Combustion |
title_sort | mechanistic influence of chemical agglomeration agents
on removal of inhalable particles from coal combustion |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557991/ https://www.ncbi.nlm.nih.gov/pubmed/33073116 http://dx.doi.org/10.1021/acsomega.0c03263 |
work_keys_str_mv | AT lirunhao mechanisticinfluenceofchemicalagglomerationagentsonremovalofinhalableparticlesfromcoalcombustion AT lichengbo mechanisticinfluenceofchemicalagglomerationagentsonremovalofinhalableparticlesfromcoalcombustion AT zhuangjinyin mechanisticinfluenceofchemicalagglomerationagentsonremovalofinhalableparticlesfromcoalcombustion AT zhuhongtang mechanisticinfluenceofchemicalagglomerationagentsonremovalofinhalableparticlesfromcoalcombustion AT fanglong mechanisticinfluenceofchemicalagglomerationagentsonremovalofinhalableparticlesfromcoalcombustion AT sundeshuai mechanisticinfluenceofchemicalagglomerationagentsonremovalofinhalableparticlesfromcoalcombustion |