Cargando…
Microwave-Assisted Hydrothermal Preparation of Corn Straw Hydrochar as Supercapacitor Electrode Materials
[Image: see text] In this work, we propose the microwave-assisted hydrothermal activation method to synthesize supercapacitor electrode materials from corn straw under a small amount of the potassium catalyst (30 wt %), which can meet the environmental protection and low-cost requirement. With the e...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557994/ https://www.ncbi.nlm.nih.gov/pubmed/33073135 http://dx.doi.org/10.1021/acsomega.0c03605 |
_version_ | 1783594540217663488 |
---|---|
author | Liu, Dongdong Wang, Yiting Jia, Boyin Wei, Jintao Liu, Chang Zhu, Junhao Tang, Shanshan Wu, Zhihai Chen, Guang |
author_facet | Liu, Dongdong Wang, Yiting Jia, Boyin Wei, Jintao Liu, Chang Zhu, Junhao Tang, Shanshan Wu, Zhihai Chen, Guang |
author_sort | Liu, Dongdong |
collection | PubMed |
description | [Image: see text] In this work, we propose the microwave-assisted hydrothermal activation method to synthesize supercapacitor electrode materials from corn straw under a small amount of the potassium catalyst (30 wt %), which can meet the environmental protection and low-cost requirement. With the extension of radiation time from 40 to 100 min, the pore structure of hydrochar expands from the micropore to hierarchical pore, and the microstructure evolves from an amorphous structure to graphene-like sheets. Microwave-assisted hydrothermal activation can control the synergistic development of hierarchical pore and graphene-like sheets of hydrochar under the condition of using a lesser amount of the catalyst. The as-obtained HTC-40/70/100 shows an excellent graphitization degree and the developed hierarchical pores. By comparing the electrochemical performance of the symmetrical capacitor devices composed of corn straw hydrochar and pyrochar in organic electrolytes, we have found that the hydrochar is suitable for organic system symmetric capacitance, and the pore structure and graphitization degree are closely related to the transmission of ions and electrons in the electrolyte. Therefore, HTC-100 with a high specific surface area (1781 m(2)/g) and highly ordered microstructure has the best electrochemical performance. |
format | Online Article Text |
id | pubmed-7557994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75579942020-10-16 Microwave-Assisted Hydrothermal Preparation of Corn Straw Hydrochar as Supercapacitor Electrode Materials Liu, Dongdong Wang, Yiting Jia, Boyin Wei, Jintao Liu, Chang Zhu, Junhao Tang, Shanshan Wu, Zhihai Chen, Guang ACS Omega [Image: see text] In this work, we propose the microwave-assisted hydrothermal activation method to synthesize supercapacitor electrode materials from corn straw under a small amount of the potassium catalyst (30 wt %), which can meet the environmental protection and low-cost requirement. With the extension of radiation time from 40 to 100 min, the pore structure of hydrochar expands from the micropore to hierarchical pore, and the microstructure evolves from an amorphous structure to graphene-like sheets. Microwave-assisted hydrothermal activation can control the synergistic development of hierarchical pore and graphene-like sheets of hydrochar under the condition of using a lesser amount of the catalyst. The as-obtained HTC-40/70/100 shows an excellent graphitization degree and the developed hierarchical pores. By comparing the electrochemical performance of the symmetrical capacitor devices composed of corn straw hydrochar and pyrochar in organic electrolytes, we have found that the hydrochar is suitable for organic system symmetric capacitance, and the pore structure and graphitization degree are closely related to the transmission of ions and electrons in the electrolyte. Therefore, HTC-100 with a high specific surface area (1781 m(2)/g) and highly ordered microstructure has the best electrochemical performance. American Chemical Society 2020-10-02 /pmc/articles/PMC7557994/ /pubmed/33073135 http://dx.doi.org/10.1021/acsomega.0c03605 Text en © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Liu, Dongdong Wang, Yiting Jia, Boyin Wei, Jintao Liu, Chang Zhu, Junhao Tang, Shanshan Wu, Zhihai Chen, Guang Microwave-Assisted Hydrothermal Preparation of Corn Straw Hydrochar as Supercapacitor Electrode Materials |
title | Microwave-Assisted Hydrothermal Preparation of Corn
Straw Hydrochar as Supercapacitor Electrode Materials |
title_full | Microwave-Assisted Hydrothermal Preparation of Corn
Straw Hydrochar as Supercapacitor Electrode Materials |
title_fullStr | Microwave-Assisted Hydrothermal Preparation of Corn
Straw Hydrochar as Supercapacitor Electrode Materials |
title_full_unstemmed | Microwave-Assisted Hydrothermal Preparation of Corn
Straw Hydrochar as Supercapacitor Electrode Materials |
title_short | Microwave-Assisted Hydrothermal Preparation of Corn
Straw Hydrochar as Supercapacitor Electrode Materials |
title_sort | microwave-assisted hydrothermal preparation of corn
straw hydrochar as supercapacitor electrode materials |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557994/ https://www.ncbi.nlm.nih.gov/pubmed/33073135 http://dx.doi.org/10.1021/acsomega.0c03605 |
work_keys_str_mv | AT liudongdong microwaveassistedhydrothermalpreparationofcornstrawhydrocharassupercapacitorelectrodematerials AT wangyiting microwaveassistedhydrothermalpreparationofcornstrawhydrocharassupercapacitorelectrodematerials AT jiaboyin microwaveassistedhydrothermalpreparationofcornstrawhydrocharassupercapacitorelectrodematerials AT weijintao microwaveassistedhydrothermalpreparationofcornstrawhydrocharassupercapacitorelectrodematerials AT liuchang microwaveassistedhydrothermalpreparationofcornstrawhydrocharassupercapacitorelectrodematerials AT zhujunhao microwaveassistedhydrothermalpreparationofcornstrawhydrocharassupercapacitorelectrodematerials AT tangshanshan microwaveassistedhydrothermalpreparationofcornstrawhydrocharassupercapacitorelectrodematerials AT wuzhihai microwaveassistedhydrothermalpreparationofcornstrawhydrocharassupercapacitorelectrodematerials AT chenguang microwaveassistedhydrothermalpreparationofcornstrawhydrocharassupercapacitorelectrodematerials |