Cargando…
Study on Gas Diffusion in Fire Working Areas of Oil and Gas Pipelines Based on Temperature Difference
[Image: see text] When a pipeline is under fire safety work construction, the stack effect of the pipeline will increase the diffusion rate of nitrogen, reduce the oxygen content, and cause asphyxia. To prove the influence of the stack effect of the pipeline on the nitrogen movement in the pipeline...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557998/ https://www.ncbi.nlm.nih.gov/pubmed/33073108 http://dx.doi.org/10.1021/acsomega.0c03161 |
_version_ | 1783594541166624768 |
---|---|
author | Zheng, Dengfeng Jiang, Zhongan Qu, Jing Zhang, Mingxing Hao, Xiaoyan Zhang, Guoliang Wang, Jiuzhu Wang, Yapeng |
author_facet | Zheng, Dengfeng Jiang, Zhongan Qu, Jing Zhang, Mingxing Hao, Xiaoyan Zhang, Guoliang Wang, Jiuzhu Wang, Yapeng |
author_sort | Zheng, Dengfeng |
collection | PubMed |
description | [Image: see text] When a pipeline is under fire safety work construction, the stack effect of the pipeline will increase the diffusion rate of nitrogen, reduce the oxygen content, and cause asphyxia. To prove the influence of the stack effect of the pipeline on the nitrogen movement in the pipeline and put forward effective ventilation control measures, the formation mechanism, gas diffusion law, and ventilation parameters of the stack effect of the oil and gas pipelines are studied through theoretical derivation and numerical simulation. The results show that the nitrogen concentration at the height of the breathing zone in the hot zone first increases and then decreases along the axial distance. The larger the temperature difference, the faster the diffusion speed of nitrogen in the fire safety work area, and the lower the oxygen concentration. When the temperature difference increases to 30 °C, the maximum oxygen concentration in the work area is 0.177; to control the problem of low oxygen content caused by the stack effect, three ventilation schemes are put forward. Through the analysis that installing fans symmetrically on both sides, 4 m away from the pipe opening, can effectively reduce the stack effect intensity when the optimal working wind speed of the fan is 4 m/s. The findings of this study can help in better understanding the causes of the chimney effect during pipeline fire safety work and provide theoretical basis for controlling personnel suffocation caused by the chimney effect. |
format | Online Article Text |
id | pubmed-7557998 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75579982020-10-16 Study on Gas Diffusion in Fire Working Areas of Oil and Gas Pipelines Based on Temperature Difference Zheng, Dengfeng Jiang, Zhongan Qu, Jing Zhang, Mingxing Hao, Xiaoyan Zhang, Guoliang Wang, Jiuzhu Wang, Yapeng ACS Omega [Image: see text] When a pipeline is under fire safety work construction, the stack effect of the pipeline will increase the diffusion rate of nitrogen, reduce the oxygen content, and cause asphyxia. To prove the influence of the stack effect of the pipeline on the nitrogen movement in the pipeline and put forward effective ventilation control measures, the formation mechanism, gas diffusion law, and ventilation parameters of the stack effect of the oil and gas pipelines are studied through theoretical derivation and numerical simulation. The results show that the nitrogen concentration at the height of the breathing zone in the hot zone first increases and then decreases along the axial distance. The larger the temperature difference, the faster the diffusion speed of nitrogen in the fire safety work area, and the lower the oxygen concentration. When the temperature difference increases to 30 °C, the maximum oxygen concentration in the work area is 0.177; to control the problem of low oxygen content caused by the stack effect, three ventilation schemes are put forward. Through the analysis that installing fans symmetrically on both sides, 4 m away from the pipe opening, can effectively reduce the stack effect intensity when the optimal working wind speed of the fan is 4 m/s. The findings of this study can help in better understanding the causes of the chimney effect during pipeline fire safety work and provide theoretical basis for controlling personnel suffocation caused by the chimney effect. American Chemical Society 2020-09-30 /pmc/articles/PMC7557998/ /pubmed/33073108 http://dx.doi.org/10.1021/acsomega.0c03161 Text en This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Zheng, Dengfeng Jiang, Zhongan Qu, Jing Zhang, Mingxing Hao, Xiaoyan Zhang, Guoliang Wang, Jiuzhu Wang, Yapeng Study on Gas Diffusion in Fire Working Areas of Oil and Gas Pipelines Based on Temperature Difference |
title | Study on Gas Diffusion in Fire Working Areas of Oil
and Gas Pipelines Based on Temperature Difference |
title_full | Study on Gas Diffusion in Fire Working Areas of Oil
and Gas Pipelines Based on Temperature Difference |
title_fullStr | Study on Gas Diffusion in Fire Working Areas of Oil
and Gas Pipelines Based on Temperature Difference |
title_full_unstemmed | Study on Gas Diffusion in Fire Working Areas of Oil
and Gas Pipelines Based on Temperature Difference |
title_short | Study on Gas Diffusion in Fire Working Areas of Oil
and Gas Pipelines Based on Temperature Difference |
title_sort | study on gas diffusion in fire working areas of oil
and gas pipelines based on temperature difference |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557998/ https://www.ncbi.nlm.nih.gov/pubmed/33073108 http://dx.doi.org/10.1021/acsomega.0c03161 |
work_keys_str_mv | AT zhengdengfeng studyongasdiffusioninfireworkingareasofoilandgaspipelinesbasedontemperaturedifference AT jiangzhongan studyongasdiffusioninfireworkingareasofoilandgaspipelinesbasedontemperaturedifference AT qujing studyongasdiffusioninfireworkingareasofoilandgaspipelinesbasedontemperaturedifference AT zhangmingxing studyongasdiffusioninfireworkingareasofoilandgaspipelinesbasedontemperaturedifference AT haoxiaoyan studyongasdiffusioninfireworkingareasofoilandgaspipelinesbasedontemperaturedifference AT zhangguoliang studyongasdiffusioninfireworkingareasofoilandgaspipelinesbasedontemperaturedifference AT wangjiuzhu studyongasdiffusioninfireworkingareasofoilandgaspipelinesbasedontemperaturedifference AT wangyapeng studyongasdiffusioninfireworkingareasofoilandgaspipelinesbasedontemperaturedifference |