Cargando…

AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia

Coronavirus disease 2019 (COVID-19) emerged in 2019 and disseminated around the world rapidly. Computed tomography (CT) imaging has been proven to be an important tool for screening, disease quantification and staging. The latter is of extreme importance for organizational anticipation (availability...

Descripción completa

Detalles Bibliográficos
Autores principales: Chassagnon, Guillaume, Vakalopoulou, Maria, Battistella, Enzo, Christodoulidis, Stergios, Hoang-Thi, Trieu-Nghi, Dangeard, Severine, Deutsch, Eric, Andre, Fabrice, Guillo, Enora, Halm, Nara, El Hajj, Stefany, Bompard, Florian, Neveu, Sophie, Hani, Chahinez, Saab, Ines, Campredon, Aliénor, Koulakian, Hasmik, Bennani, Souhail, Freche, Gael, Barat, Maxime, Lombard, Aurelien, Fournier, Laure, Monnier, Hippolyte, Grand, Téodor, Gregory, Jules, Nguyen, Yann, Khalil, Antoine, Mahdjoub, Elyas, Brillet, Pierre-Yves, Tran Ba, Stéphane, Bousson, Valérie, Mekki, Ahmed, Carlier, Robert-Yves, Revel, Marie-Pierre, Paragios, Nikos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558247/
https://www.ncbi.nlm.nih.gov/pubmed/33171345
http://dx.doi.org/10.1016/j.media.2020.101860
_version_ 1783594598059212800
author Chassagnon, Guillaume
Vakalopoulou, Maria
Battistella, Enzo
Christodoulidis, Stergios
Hoang-Thi, Trieu-Nghi
Dangeard, Severine
Deutsch, Eric
Andre, Fabrice
Guillo, Enora
Halm, Nara
El Hajj, Stefany
Bompard, Florian
Neveu, Sophie
Hani, Chahinez
Saab, Ines
Campredon, Aliénor
Koulakian, Hasmik
Bennani, Souhail
Freche, Gael
Barat, Maxime
Lombard, Aurelien
Fournier, Laure
Monnier, Hippolyte
Grand, Téodor
Gregory, Jules
Nguyen, Yann
Khalil, Antoine
Mahdjoub, Elyas
Brillet, Pierre-Yves
Tran Ba, Stéphane
Bousson, Valérie
Mekki, Ahmed
Carlier, Robert-Yves
Revel, Marie-Pierre
Paragios, Nikos
author_facet Chassagnon, Guillaume
Vakalopoulou, Maria
Battistella, Enzo
Christodoulidis, Stergios
Hoang-Thi, Trieu-Nghi
Dangeard, Severine
Deutsch, Eric
Andre, Fabrice
Guillo, Enora
Halm, Nara
El Hajj, Stefany
Bompard, Florian
Neveu, Sophie
Hani, Chahinez
Saab, Ines
Campredon, Aliénor
Koulakian, Hasmik
Bennani, Souhail
Freche, Gael
Barat, Maxime
Lombard, Aurelien
Fournier, Laure
Monnier, Hippolyte
Grand, Téodor
Gregory, Jules
Nguyen, Yann
Khalil, Antoine
Mahdjoub, Elyas
Brillet, Pierre-Yves
Tran Ba, Stéphane
Bousson, Valérie
Mekki, Ahmed
Carlier, Robert-Yves
Revel, Marie-Pierre
Paragios, Nikos
author_sort Chassagnon, Guillaume
collection PubMed
description Coronavirus disease 2019 (COVID-19) emerged in 2019 and disseminated around the world rapidly. Computed tomography (CT) imaging has been proven to be an important tool for screening, disease quantification and staging. The latter is of extreme importance for organizational anticipation (availability of intensive care unit beds, patient management planning) as well as to accelerate drug development through rapid, reproducible and quantified assessment of treatment response. Even if currently there are no specific guidelines for the staging of the patients, CT together with some clinical and biological biomarkers are used. In this study, we collected a multi-center cohort and we investigated the use of medical imaging and artificial intelligence for disease quantification, staging and outcome prediction. Our approach relies on automatic deep learning-based disease quantification using an ensemble of architectures, and a data-driven consensus for the staging and outcome prediction of the patients fusing imaging biomarkers with clinical and biological attributes. Highly promising results on multiple external/independent evaluation cohorts as well as comparisons with expert human readers demonstrate the potentials of our approach.
format Online
Article
Text
id pubmed-7558247
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Published by Elsevier B.V.
record_format MEDLINE/PubMed
spelling pubmed-75582472020-10-15 AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia Chassagnon, Guillaume Vakalopoulou, Maria Battistella, Enzo Christodoulidis, Stergios Hoang-Thi, Trieu-Nghi Dangeard, Severine Deutsch, Eric Andre, Fabrice Guillo, Enora Halm, Nara El Hajj, Stefany Bompard, Florian Neveu, Sophie Hani, Chahinez Saab, Ines Campredon, Aliénor Koulakian, Hasmik Bennani, Souhail Freche, Gael Barat, Maxime Lombard, Aurelien Fournier, Laure Monnier, Hippolyte Grand, Téodor Gregory, Jules Nguyen, Yann Khalil, Antoine Mahdjoub, Elyas Brillet, Pierre-Yves Tran Ba, Stéphane Bousson, Valérie Mekki, Ahmed Carlier, Robert-Yves Revel, Marie-Pierre Paragios, Nikos Med Image Anal Article Coronavirus disease 2019 (COVID-19) emerged in 2019 and disseminated around the world rapidly. Computed tomography (CT) imaging has been proven to be an important tool for screening, disease quantification and staging. The latter is of extreme importance for organizational anticipation (availability of intensive care unit beds, patient management planning) as well as to accelerate drug development through rapid, reproducible and quantified assessment of treatment response. Even if currently there are no specific guidelines for the staging of the patients, CT together with some clinical and biological biomarkers are used. In this study, we collected a multi-center cohort and we investigated the use of medical imaging and artificial intelligence for disease quantification, staging and outcome prediction. Our approach relies on automatic deep learning-based disease quantification using an ensemble of architectures, and a data-driven consensus for the staging and outcome prediction of the patients fusing imaging biomarkers with clinical and biological attributes. Highly promising results on multiple external/independent evaluation cohorts as well as comparisons with expert human readers demonstrate the potentials of our approach. Published by Elsevier B.V. 2021-01 2020-10-15 /pmc/articles/PMC7558247/ /pubmed/33171345 http://dx.doi.org/10.1016/j.media.2020.101860 Text en © 2021 Published by Elsevier B.V. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Chassagnon, Guillaume
Vakalopoulou, Maria
Battistella, Enzo
Christodoulidis, Stergios
Hoang-Thi, Trieu-Nghi
Dangeard, Severine
Deutsch, Eric
Andre, Fabrice
Guillo, Enora
Halm, Nara
El Hajj, Stefany
Bompard, Florian
Neveu, Sophie
Hani, Chahinez
Saab, Ines
Campredon, Aliénor
Koulakian, Hasmik
Bennani, Souhail
Freche, Gael
Barat, Maxime
Lombard, Aurelien
Fournier, Laure
Monnier, Hippolyte
Grand, Téodor
Gregory, Jules
Nguyen, Yann
Khalil, Antoine
Mahdjoub, Elyas
Brillet, Pierre-Yves
Tran Ba, Stéphane
Bousson, Valérie
Mekki, Ahmed
Carlier, Robert-Yves
Revel, Marie-Pierre
Paragios, Nikos
AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia
title AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia
title_full AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia
title_fullStr AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia
title_full_unstemmed AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia
title_short AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia
title_sort ai-driven quantification, staging and outcome prediction of covid-19 pneumonia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558247/
https://www.ncbi.nlm.nih.gov/pubmed/33171345
http://dx.doi.org/10.1016/j.media.2020.101860
work_keys_str_mv AT chassagnonguillaume aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT vakalopouloumaria aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT battistellaenzo aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT christodoulidisstergios aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT hoangthitrieunghi aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT dangeardseverine aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT deutscheric aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT andrefabrice aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT guilloenora aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT halmnara aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT elhajjstefany aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT bompardflorian aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT neveusophie aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT hanichahinez aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT saabines aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT campredonalienor aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT koulakianhasmik aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT bennanisouhail aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT frechegael aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT baratmaxime aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT lombardaurelien aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT fournierlaure aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT monnierhippolyte aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT grandteodor aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT gregoryjules aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT nguyenyann aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT khalilantoine aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT mahdjoubelyas aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT brilletpierreyves aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT tranbastephane aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT boussonvalerie aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT mekkiahmed aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT carlierrobertyves aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT revelmariepierre aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia
AT paragiosnikos aidrivenquantificationstagingandoutcomepredictionofcovid19pneumonia