Cargando…

Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach

The Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Li-rich NMC positive electrode (cathode) for lithium-ion batteries has been coated with nanocrystals of the LiMn(1.5)Co(0.5)O(4) high-voltage spinel cathode material. The coating was applied through a single-source precursor approach by a deposition of the mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Shevtsov, Andrey, Han, Haixiang, Morozov, Anatolii, Carozza, Jesse C., Savina, Aleksandra A., Shakhova, Iaroslava, Khasanova, Nellie R., Antipov, Evgeny V., Dikarev, Evgeny V., Abakumov, Artem M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558323/
https://www.ncbi.nlm.nih.gov/pubmed/32961971
http://dx.doi.org/10.3390/nano10091870
_version_ 1783594615983570944
author Shevtsov, Andrey
Han, Haixiang
Morozov, Anatolii
Carozza, Jesse C.
Savina, Aleksandra A.
Shakhova, Iaroslava
Khasanova, Nellie R.
Antipov, Evgeny V.
Dikarev, Evgeny V.
Abakumov, Artem M.
author_facet Shevtsov, Andrey
Han, Haixiang
Morozov, Anatolii
Carozza, Jesse C.
Savina, Aleksandra A.
Shakhova, Iaroslava
Khasanova, Nellie R.
Antipov, Evgeny V.
Dikarev, Evgeny V.
Abakumov, Artem M.
author_sort Shevtsov, Andrey
collection PubMed
description The Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Li-rich NMC positive electrode (cathode) for lithium-ion batteries has been coated with nanocrystals of the LiMn(1.5)Co(0.5)O(4) high-voltage spinel cathode material. The coating was applied through a single-source precursor approach by a deposition of the molecular precursor LiMn(1.5)Co(0.5)(thd)(5) (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) dissolved in diethyl ether, followed by thermal decomposition at 400 °C inair resulting in a chemically homogeneous cubic spinel. The structure and chemical composition of the coatings, deposited on the model SiO(2) spheres and Li-rich NMC crystallites, were analyzed using powder X-ray diffraction, electron diffraction, high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) mapping. The coated material containing 12 wt.% of spinel demonstrates a significantly improved first cycle Coulombic efficiency of 92% with a high first cycle discharge capacity of 290 mAhg(−1). The coating also improves the capacity and voltage retention monitored over 25 galvanostatic charge–discharge cycles, although a complete suppression of the capacity and voltage fade is not achieved.
format Online
Article
Text
id pubmed-7558323
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75583232020-10-22 Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach Shevtsov, Andrey Han, Haixiang Morozov, Anatolii Carozza, Jesse C. Savina, Aleksandra A. Shakhova, Iaroslava Khasanova, Nellie R. Antipov, Evgeny V. Dikarev, Evgeny V. Abakumov, Artem M. Nanomaterials (Basel) Article The Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Li-rich NMC positive electrode (cathode) for lithium-ion batteries has been coated with nanocrystals of the LiMn(1.5)Co(0.5)O(4) high-voltage spinel cathode material. The coating was applied through a single-source precursor approach by a deposition of the molecular precursor LiMn(1.5)Co(0.5)(thd)(5) (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) dissolved in diethyl ether, followed by thermal decomposition at 400 °C inair resulting in a chemically homogeneous cubic spinel. The structure and chemical composition of the coatings, deposited on the model SiO(2) spheres and Li-rich NMC crystallites, were analyzed using powder X-ray diffraction, electron diffraction, high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) mapping. The coated material containing 12 wt.% of spinel demonstrates a significantly improved first cycle Coulombic efficiency of 92% with a high first cycle discharge capacity of 290 mAhg(−1). The coating also improves the capacity and voltage retention monitored over 25 galvanostatic charge–discharge cycles, although a complete suppression of the capacity and voltage fade is not achieved. MDPI 2020-09-18 /pmc/articles/PMC7558323/ /pubmed/32961971 http://dx.doi.org/10.3390/nano10091870 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Shevtsov, Andrey
Han, Haixiang
Morozov, Anatolii
Carozza, Jesse C.
Savina, Aleksandra A.
Shakhova, Iaroslava
Khasanova, Nellie R.
Antipov, Evgeny V.
Dikarev, Evgeny V.
Abakumov, Artem M.
Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach
title Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach
title_full Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach
title_fullStr Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach
title_full_unstemmed Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach
title_short Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach
title_sort protective spinel coating for li(1.17)ni(0.17)mn(0.50)co(0.17)o(2) cathode for li-ion batteries through single-source precursor approach
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558323/
https://www.ncbi.nlm.nih.gov/pubmed/32961971
http://dx.doi.org/10.3390/nano10091870
work_keys_str_mv AT shevtsovandrey protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach
AT hanhaixiang protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach
AT morozovanatolii protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach
AT carozzajessec protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach
AT savinaaleksandraa protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach
AT shakhovaiaroslava protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach
AT khasanovanellier protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach
AT antipovevgenyv protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach
AT dikarevevgenyv protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach
AT abakumovartemm protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach