Cargando…
Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach
The Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Li-rich NMC positive electrode (cathode) for lithium-ion batteries has been coated with nanocrystals of the LiMn(1.5)Co(0.5)O(4) high-voltage spinel cathode material. The coating was applied through a single-source precursor approach by a deposition of the mo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558323/ https://www.ncbi.nlm.nih.gov/pubmed/32961971 http://dx.doi.org/10.3390/nano10091870 |
_version_ | 1783594615983570944 |
---|---|
author | Shevtsov, Andrey Han, Haixiang Morozov, Anatolii Carozza, Jesse C. Savina, Aleksandra A. Shakhova, Iaroslava Khasanova, Nellie R. Antipov, Evgeny V. Dikarev, Evgeny V. Abakumov, Artem M. |
author_facet | Shevtsov, Andrey Han, Haixiang Morozov, Anatolii Carozza, Jesse C. Savina, Aleksandra A. Shakhova, Iaroslava Khasanova, Nellie R. Antipov, Evgeny V. Dikarev, Evgeny V. Abakumov, Artem M. |
author_sort | Shevtsov, Andrey |
collection | PubMed |
description | The Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Li-rich NMC positive electrode (cathode) for lithium-ion batteries has been coated with nanocrystals of the LiMn(1.5)Co(0.5)O(4) high-voltage spinel cathode material. The coating was applied through a single-source precursor approach by a deposition of the molecular precursor LiMn(1.5)Co(0.5)(thd)(5) (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) dissolved in diethyl ether, followed by thermal decomposition at 400 °C inair resulting in a chemically homogeneous cubic spinel. The structure and chemical composition of the coatings, deposited on the model SiO(2) spheres and Li-rich NMC crystallites, were analyzed using powder X-ray diffraction, electron diffraction, high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) mapping. The coated material containing 12 wt.% of spinel demonstrates a significantly improved first cycle Coulombic efficiency of 92% with a high first cycle discharge capacity of 290 mAhg(−1). The coating also improves the capacity and voltage retention monitored over 25 galvanostatic charge–discharge cycles, although a complete suppression of the capacity and voltage fade is not achieved. |
format | Online Article Text |
id | pubmed-7558323 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75583232020-10-22 Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach Shevtsov, Andrey Han, Haixiang Morozov, Anatolii Carozza, Jesse C. Savina, Aleksandra A. Shakhova, Iaroslava Khasanova, Nellie R. Antipov, Evgeny V. Dikarev, Evgeny V. Abakumov, Artem M. Nanomaterials (Basel) Article The Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Li-rich NMC positive electrode (cathode) for lithium-ion batteries has been coated with nanocrystals of the LiMn(1.5)Co(0.5)O(4) high-voltage spinel cathode material. The coating was applied through a single-source precursor approach by a deposition of the molecular precursor LiMn(1.5)Co(0.5)(thd)(5) (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) dissolved in diethyl ether, followed by thermal decomposition at 400 °C inair resulting in a chemically homogeneous cubic spinel. The structure and chemical composition of the coatings, deposited on the model SiO(2) spheres and Li-rich NMC crystallites, were analyzed using powder X-ray diffraction, electron diffraction, high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) mapping. The coated material containing 12 wt.% of spinel demonstrates a significantly improved first cycle Coulombic efficiency of 92% with a high first cycle discharge capacity of 290 mAhg(−1). The coating also improves the capacity and voltage retention monitored over 25 galvanostatic charge–discharge cycles, although a complete suppression of the capacity and voltage fade is not achieved. MDPI 2020-09-18 /pmc/articles/PMC7558323/ /pubmed/32961971 http://dx.doi.org/10.3390/nano10091870 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shevtsov, Andrey Han, Haixiang Morozov, Anatolii Carozza, Jesse C. Savina, Aleksandra A. Shakhova, Iaroslava Khasanova, Nellie R. Antipov, Evgeny V. Dikarev, Evgeny V. Abakumov, Artem M. Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach |
title | Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach |
title_full | Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach |
title_fullStr | Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach |
title_full_unstemmed | Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach |
title_short | Protective Spinel Coating for Li(1.17)Ni(0.17)Mn(0.50)Co(0.17)O(2) Cathode for Li-Ion Batteries through Single-Source Precursor Approach |
title_sort | protective spinel coating for li(1.17)ni(0.17)mn(0.50)co(0.17)o(2) cathode for li-ion batteries through single-source precursor approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558323/ https://www.ncbi.nlm.nih.gov/pubmed/32961971 http://dx.doi.org/10.3390/nano10091870 |
work_keys_str_mv | AT shevtsovandrey protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach AT hanhaixiang protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach AT morozovanatolii protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach AT carozzajessec protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach AT savinaaleksandraa protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach AT shakhovaiaroslava protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach AT khasanovanellier protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach AT antipovevgenyv protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach AT dikarevevgenyv protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach AT abakumovartemm protectivespinelcoatingforli117ni017mn050co017o2cathodeforliionbatteriesthroughsinglesourceprecursorapproach |