Cargando…

Facile Synthesis of Antimicrobial Aloe Vera-“Smart” Triiodide-PVP Biomaterials

Antibiotic resistance is an eminent threat for the survival of mankind. Nosocomial infections caused by multidrug resistant microorganisms are a reason for morbidity and mortality worldwide. Plant-based antimicrobial agents are based on synergistic mechanisms which prevent resistance and have been u...

Descripción completa

Detalles Bibliográficos
Autores principales: Edis, Zehra, Bloukh, Samir Haj
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558393/
https://www.ncbi.nlm.nih.gov/pubmed/32957469
http://dx.doi.org/10.3390/biomimetics5030045
Descripción
Sumario:Antibiotic resistance is an eminent threat for the survival of mankind. Nosocomial infections caused by multidrug resistant microorganisms are a reason for morbidity and mortality worldwide. Plant-based antimicrobial agents are based on synergistic mechanisms which prevent resistance and have been used for centuries against ailments. We suggest the use of cost-effective, eco-friendly Aloe Vera Barbadensis Miller (AV)-iodine biomaterials as a new generation of antimicrobial agents. In a facile, one-pot synthesis, we encapsulated fresh AV gel with polyvinylpyrrolidone (PVP) as a stabilizing agent and incorporated iodine moieties in the form of iodine (I(2)) and sodium iodide (NaI) into the polymer matrix. Ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), microstructural analysis by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) verified the composition of AV-PVP-I(2), AV-PVP-I(2)-NaI. AV, AV-PVP, AV-PVP-I(2), AV-PVP-I(2)-NaI, and AV-PVP-NaI were tested in-vitro by disc diffusion assay and dip-coated on polyglycolic acid (PGA) sutures against ten microbial reference strains. All the tested pathogens were more susceptible towards AV-PVP-I(2) due to the inclusion of “smart” triiodides with halogen bonding in vitro and on dip-coated sutures. The biocomplexes AV-PVP-I(2), AV-PVP-I(2)-NaI showed remarkable antimicrobial properties. “Smart” biohybrids with triiodide inclusions have excellent antifungal and promising antimicrobial activities, with potential use against surgical site infections (SSI) and as disinfecting agents.