Cargando…
Antibiotic Tolerance of Staphylococcus aureus Biofilm in Periprosthetic Joint Infections and Antibiofilm Strategies
The need for bone and joint prostheses is currently growing due to population aging, leading to an increase in prosthetic joint infection cases. Biofilms represent an adaptive and quite common bacterial response to several stress factors which confer an important protection to bacteria. Biofilm form...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558573/ https://www.ncbi.nlm.nih.gov/pubmed/32867208 http://dx.doi.org/10.3390/antibiotics9090547 |
_version_ | 1783594668960776192 |
---|---|
author | Lamret, Fabien Colin, Marius Mongaret, Céline Gangloff, Sophie C. Reffuveille, Fany |
author_facet | Lamret, Fabien Colin, Marius Mongaret, Céline Gangloff, Sophie C. Reffuveille, Fany |
author_sort | Lamret, Fabien |
collection | PubMed |
description | The need for bone and joint prostheses is currently growing due to population aging, leading to an increase in prosthetic joint infection cases. Biofilms represent an adaptive and quite common bacterial response to several stress factors which confer an important protection to bacteria. Biofilm formation starts with bacterial adhesion on a surface, such as an orthopedic prosthesis, further reinforced by matrix synthesis. The biofilm formation and structure depend on the immediate environment of the bacteria. In the case of infection, the periprosthetic joint environment represents a particular interface between bacteria, host cells, and the implant, favoring biofilm initiation and maturation. Treating such an infection represents a huge challenge because of the biofilm-specific high tolerance to antibiotics and its ability to evade the immune system. It is crucial to understand these mechanisms in order to find new and adapted strategies to prevent and eradicate implant-associated infections. Therefore, adapted models mimicking the infectious site are of utmost importance to recreate a relevant environment in order to test potential antibiofilm molecules. In periprosthetic joint infections, Staphylococcus aureus is mainly involved because of its high adaptation to the human physiology. The current review deals with the mechanisms involved in the antibiotic resistance and tolerance of Staphylococcus aureus in the particular periprosthetic joint infection context, and exposes different strategies to manage these infections. |
format | Online Article Text |
id | pubmed-7558573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75585732020-10-26 Antibiotic Tolerance of Staphylococcus aureus Biofilm in Periprosthetic Joint Infections and Antibiofilm Strategies Lamret, Fabien Colin, Marius Mongaret, Céline Gangloff, Sophie C. Reffuveille, Fany Antibiotics (Basel) Review The need for bone and joint prostheses is currently growing due to population aging, leading to an increase in prosthetic joint infection cases. Biofilms represent an adaptive and quite common bacterial response to several stress factors which confer an important protection to bacteria. Biofilm formation starts with bacterial adhesion on a surface, such as an orthopedic prosthesis, further reinforced by matrix synthesis. The biofilm formation and structure depend on the immediate environment of the bacteria. In the case of infection, the periprosthetic joint environment represents a particular interface between bacteria, host cells, and the implant, favoring biofilm initiation and maturation. Treating such an infection represents a huge challenge because of the biofilm-specific high tolerance to antibiotics and its ability to evade the immune system. It is crucial to understand these mechanisms in order to find new and adapted strategies to prevent and eradicate implant-associated infections. Therefore, adapted models mimicking the infectious site are of utmost importance to recreate a relevant environment in order to test potential antibiofilm molecules. In periprosthetic joint infections, Staphylococcus aureus is mainly involved because of its high adaptation to the human physiology. The current review deals with the mechanisms involved in the antibiotic resistance and tolerance of Staphylococcus aureus in the particular periprosthetic joint infection context, and exposes different strategies to manage these infections. MDPI 2020-08-27 /pmc/articles/PMC7558573/ /pubmed/32867208 http://dx.doi.org/10.3390/antibiotics9090547 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Lamret, Fabien Colin, Marius Mongaret, Céline Gangloff, Sophie C. Reffuveille, Fany Antibiotic Tolerance of Staphylococcus aureus Biofilm in Periprosthetic Joint Infections and Antibiofilm Strategies |
title | Antibiotic Tolerance of Staphylococcus aureus Biofilm in Periprosthetic Joint Infections and Antibiofilm Strategies |
title_full | Antibiotic Tolerance of Staphylococcus aureus Biofilm in Periprosthetic Joint Infections and Antibiofilm Strategies |
title_fullStr | Antibiotic Tolerance of Staphylococcus aureus Biofilm in Periprosthetic Joint Infections and Antibiofilm Strategies |
title_full_unstemmed | Antibiotic Tolerance of Staphylococcus aureus Biofilm in Periprosthetic Joint Infections and Antibiofilm Strategies |
title_short | Antibiotic Tolerance of Staphylococcus aureus Biofilm in Periprosthetic Joint Infections and Antibiofilm Strategies |
title_sort | antibiotic tolerance of staphylococcus aureus biofilm in periprosthetic joint infections and antibiofilm strategies |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558573/ https://www.ncbi.nlm.nih.gov/pubmed/32867208 http://dx.doi.org/10.3390/antibiotics9090547 |
work_keys_str_mv | AT lamretfabien antibiotictoleranceofstaphylococcusaureusbiofilminperiprostheticjointinfectionsandantibiofilmstrategies AT colinmarius antibiotictoleranceofstaphylococcusaureusbiofilminperiprostheticjointinfectionsandantibiofilmstrategies AT mongaretceline antibiotictoleranceofstaphylococcusaureusbiofilminperiprostheticjointinfectionsandantibiofilmstrategies AT gangloffsophiec antibiotictoleranceofstaphylococcusaureusbiofilminperiprostheticjointinfectionsandantibiofilmstrategies AT reffuveillefany antibiotictoleranceofstaphylococcusaureusbiofilminperiprostheticjointinfectionsandantibiofilmstrategies |