Cargando…

Vitamin D Decreases Plasma Trimethylamine-N-oxide Level in Mice by Regulating Gut Microbiota

As a metabolite generated by gut microbiota, trimethylamine-N-oxide (TMAO) has been proven to promote atherosclerosis and is a novel potential risk factor for cardiovascular disease (CVD). The objective of this study was to examine whether regulating gut microbiota by vitamin D supplementation could...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xin, Li, Xueqi, Dong, Yumei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558778/
https://www.ncbi.nlm.nih.gov/pubmed/33083493
http://dx.doi.org/10.1155/2020/9896743
Descripción
Sumario:As a metabolite generated by gut microbiota, trimethylamine-N-oxide (TMAO) has been proven to promote atherosclerosis and is a novel potential risk factor for cardiovascular disease (CVD). The objective of this study was to examine whether regulating gut microbiota by vitamin D supplementation could reduce the plasma TMAO level in mice. For 16 weeks, C57BL/6J mice were fed a chow (C) or high-choline diet (HC) without or with supplementation of vitamin D(3) (CD3 and HCD3) or a high-choline diet with vitamin D(3) supplementation and antibiotics (HCD3A). The results indicate that the HC group exhibited higher plasma trimethylamine (TMA) and TMAO levels, lower richness of gut microbiota, and significantly increased Firmicutes and decreased Bacteroidetes as compared with group C. Vitamin D supplementation significantly reduced plasma TMA and TMAO levels in mice fed a high-choline diet. Furthermore, gut microbiota composition was regulated, and the Firmicutes/Bacteroidetes ratio was reduced by vitamin D. Spearman correlation analysis indicated that Bacteroides and Akkermansia were negatively correlated with plasma TMAO in the HC and HCD3 groups. Our study provides a novel avenue for the prevention and treatment of CVD with vitamin D.