Cargando…
Proteomic and Transcriptomic Analyses Indicate Metabolic Changes and Reduced Defense Responses in Mycorrhizal Roots of Oeceoclades maculata (Orchidaceae) Collected in Nature
Orchids form endomycorrhizal associations with fungi mainly belonging to basidiomycetes. The molecular events taking place in orchid mycorrhiza are poorly understood, although the cellular changes necessary to accommodate the fungus and to control nutrient exchanges imply a modulation of gene expres...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558880/ https://www.ncbi.nlm.nih.gov/pubmed/32858792 http://dx.doi.org/10.3390/jof6030148 |
Sumario: | Orchids form endomycorrhizal associations with fungi mainly belonging to basidiomycetes. The molecular events taking place in orchid mycorrhiza are poorly understood, although the cellular changes necessary to accommodate the fungus and to control nutrient exchanges imply a modulation of gene expression. Here, we used proteomics and transcriptomics to identify changes in the steady-state levels of proteins and transcripts in the roots of the green terrestrial orchid Oeceoclades maculata. When mycorrhizal and non-mycorrhizal roots from the same individuals were compared, 94 proteins showed differential accumulation using the label-free protein quantitation approach, 86 using isobaric tagging and 60 using 2D-differential electrophoresis. After de novo assembly of transcriptomic data, 11,179 plant transcripts were found to be differentially expressed, and 2175 were successfully annotated. The annotated plant transcripts allowed the identification of up- and down-regulated metabolic pathways. Overall, proteomics and transcriptomics revealed, in mycorrhizal roots, increased levels of transcription factors and nutrient transporters, as well as ethylene-related proteins. The expression pattern of proteins and transcripts involved in plant defense responses suggested that plant defense was reduced in O. maculata mycorrhizal roots sampled in nature. These results expand our current knowledge towards a better understanding of the orchid mycorrhizal symbiosis in adult plants under natural conditions. |
---|