Cargando…

Multifunctional Fe(3)O(4)-Au Nanoparticles for the MRI Diagnosis and Potential Treatment of Liver Cancer

Heterodimeric nanoparticles comprising materials with different functionalities are of great interest for fundamental research and biomedical/industrial applications. In this work, Fe(3)O(4)-Au nano-heterostructures were synthesized by a one-step thermal decomposition method. The hybrid nanoparticle...

Descripción completa

Detalles Bibliográficos
Autores principales: Kozenkova, Elena, Levada, Kateryna, Efremova, Maria V., Omelyanchik, Alexander, Nalench, Yulia A., Garanina, Anastasiia S., Pshenichnikov, Stanislav, Zhukov, Dmitry G., Lunov, Oleg, Lunova, Mariia, Kozenkov, Ivan, Innocenti, Claudia, Albino, Martin, Abakumov, Maxim A., Sangregorio, Claudio, Rodionova, Valeria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558883/
https://www.ncbi.nlm.nih.gov/pubmed/32825748
http://dx.doi.org/10.3390/nano10091646
Descripción
Sumario:Heterodimeric nanoparticles comprising materials with different functionalities are of great interest for fundamental research and biomedical/industrial applications. In this work, Fe(3)O(4)-Au nano-heterostructures were synthesized by a one-step thermal decomposition method. The hybrid nanoparticles comprise a highly crystalline 12 nm magnetite octahedron decorated with a single noble metal sphere of 6 nm diameter. Detailed analysis of the nanoparticles was performed by UV-visible spectroscopy, magnetometry, calorimetry and relaxometry studies. The cytotoxic effect of the nanoparticles in the human hepatic cell line Huh7 and PLC/PRF/5-Alexander was also assessed. These Fe(3)O(4)-Au bifunctional nanoparticles showed no significant cytotoxicity in these two cell lines. The nanoparticles showed a good theranostic potential for liver cancer treatment, since the r(2) relaxivity (166.5 mM(−1)·s(−1) and 99.5 mM(−1)·s(−1) in water and HepG2 cells, respectively) is higher than the corresponding values for commercial T(2) contrast agents and the Specific Absorption Rate (SAR) value obtained (227 W/g(Fe)) is enough to make them suitable as heat mediators for Magnetic Fluid Hyperthermia. The gold counterpart can further allow the conjugation with different biomolecules and the optical sensing.