Cargando…

Molecularly Imprinting Polymers (MIP) Based on Nitrogen Doped Carbon Dots and MIL-101(Fe) for Doxorubicin Hydrochloride Delivery

MIL-based molecularly imprinted polymer (MIP) nanocomposites were successfully synthesized through a simple and versatile stirring auxiliary encapsulation method. MIP as a carrier has been applied to the highly efficient selective recognition and sustained release of doxorubicin hydrochloride (DOX)....

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Yuqiong, Wang, Yuxuan, Zhu, Jinhua, Liu, Wei, Khan, Md. Zaved H., Liu, Xiuhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559160/
https://www.ncbi.nlm.nih.gov/pubmed/32842523
http://dx.doi.org/10.3390/nano10091655
Descripción
Sumario:MIL-based molecularly imprinted polymer (MIP) nanocomposites were successfully synthesized through a simple and versatile stirring auxiliary encapsulation method. MIP as a carrier has been applied to the highly efficient selective recognition and sustained release of doxorubicin hydrochloride (DOX). The adsorption mechanism and release behavior of MIP@DOX in vitro were also discussed. Adsorption studies showed that MIP using DOX as template had specific selectivity to DOX, and its optimal drug loading efficiency reached 97.99%. The adsorption isotherm accorded with Freundlich models. The cumulative release curve showed that at the conditions of pH 5.5 and 7.4, the nanomaterials have a slow-release effect on the release of DOX. In addition, the cytotoxicity and bioactivity of MIP nanoparticles on HepG2 and HL-7702 cell lines measured by MTT assay also proved their low toxicity and biological activity. The cell activity of HepG2 and HL-7702 incubated with MIP for 24 h was 69.9% and 76.07%, respectively. These results collectively illustrated that the MIP nano-materials synthesized in this study can be efficiently employed to the drug delivery systems.