Cargando…
An evaluation of DistillerSR’s machine learning-based prioritization tool for title/abstract screening – impact on reviewer-relevant outcomes
BACKGROUND: Systematic reviews often require substantial resources, partially due to the large number of records identified during searching. Although artificial intelligence may not be ready to fully replace human reviewers, it may accelerate and reduce the screening burden. Using DistillerSR (May...
Autores principales: | Hamel, C., Kelly, S. E., Thavorn, K., Rice, D. B., Wells, G. A., Hutton, B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559198/ https://www.ncbi.nlm.nih.gov/pubmed/33059590 http://dx.doi.org/10.1186/s12874-020-01129-1 |
Ejemplares similares
-
Guidance for using artificial intelligence for title and abstract screening while conducting knowledge syntheses
por: Hamel, Candyce, et al.
Publicado: (2021) -
Abstracts Accepted by Title
Publicado: (1990) -
Titles versus titles and abstracts for initial screening of articles for systematic reviews
por: Mateen, Farrah J, et al.
Publicado: (2013) -
Technology-assisted title and abstract screening for systematic reviews: a retrospective evaluation of the Abstrackr machine learning tool
por: Gates, Allison, et al.
Publicado: (2018) -
Errors in Title, Abstract, and Results
Publicado: (2023)