Cargando…
Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy
Cerenkov luminescence imaging and Cerenkov photodynamic therapy have been developed in recent years to exploit the Cerenkov radiation (CR) generated by radioisotopes, frequently used in Nuclear Medicine, to diagnose and fight cancer lesions. For in vivo detection, the endpoint energy of the radioiso...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559269/ https://www.ncbi.nlm.nih.gov/pubmed/32906838 http://dx.doi.org/10.3390/nano10091771 |
_version_ | 1783594823088865280 |
---|---|
author | Boschi, Federico Spinelli, Antonello Enrico |
author_facet | Boschi, Federico Spinelli, Antonello Enrico |
author_sort | Boschi, Federico |
collection | PubMed |
description | Cerenkov luminescence imaging and Cerenkov photodynamic therapy have been developed in recent years to exploit the Cerenkov radiation (CR) generated by radioisotopes, frequently used in Nuclear Medicine, to diagnose and fight cancer lesions. For in vivo detection, the endpoint energy of the radioisotope and, thus, the total number of the emitted Cerenkov photons, represents a very important variable and explains why, for example, (68)Ga is better than (18)F. However, it was also found that the scintillation process is an important mechanism for light production. Nanotechnology represents the most important field, providing nanosctructures which are able to shift the UV-blue emission into a more suitable wavelength, with reduced absorption, which is useful especially for in vivo imaging and therapy applications. Nanoparticles can be made, loaded or linked to fluorescent dyes to modify the optical properties of CR radiation. They also represent a useful platform for therapeutic agents, such as photosensitizer drugs for the production of reactive oxygen species (ROS). Generally, NPs can be spaced by CR sources; however, for in vivo imaging applications, NPs bound to or incorporating radioisotopes are the most interesting nanocomplexes thanks to their high degree of mutual colocalization and the reduced problem of false uptake detection. Moreover, the distance between the NPs and CR source is crucial for energy conversion. Here, we review the principal NPs proposed in the literature, discussing their properties and the main results obtained by the proponent experimental groups. |
format | Online Article Text |
id | pubmed-7559269 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75592692020-10-29 Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy Boschi, Federico Spinelli, Antonello Enrico Nanomaterials (Basel) Review Cerenkov luminescence imaging and Cerenkov photodynamic therapy have been developed in recent years to exploit the Cerenkov radiation (CR) generated by radioisotopes, frequently used in Nuclear Medicine, to diagnose and fight cancer lesions. For in vivo detection, the endpoint energy of the radioisotope and, thus, the total number of the emitted Cerenkov photons, represents a very important variable and explains why, for example, (68)Ga is better than (18)F. However, it was also found that the scintillation process is an important mechanism for light production. Nanotechnology represents the most important field, providing nanosctructures which are able to shift the UV-blue emission into a more suitable wavelength, with reduced absorption, which is useful especially for in vivo imaging and therapy applications. Nanoparticles can be made, loaded or linked to fluorescent dyes to modify the optical properties of CR radiation. They also represent a useful platform for therapeutic agents, such as photosensitizer drugs for the production of reactive oxygen species (ROS). Generally, NPs can be spaced by CR sources; however, for in vivo imaging applications, NPs bound to or incorporating radioisotopes are the most interesting nanocomplexes thanks to their high degree of mutual colocalization and the reduced problem of false uptake detection. Moreover, the distance between the NPs and CR source is crucial for energy conversion. Here, we review the principal NPs proposed in the literature, discussing their properties and the main results obtained by the proponent experimental groups. MDPI 2020-09-07 /pmc/articles/PMC7559269/ /pubmed/32906838 http://dx.doi.org/10.3390/nano10091771 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Boschi, Federico Spinelli, Antonello Enrico Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy |
title | Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy |
title_full | Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy |
title_fullStr | Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy |
title_full_unstemmed | Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy |
title_short | Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy |
title_sort | nanoparticles for cerenkov and radioluminescent light enhancement for imaging and radiotherapy |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559269/ https://www.ncbi.nlm.nih.gov/pubmed/32906838 http://dx.doi.org/10.3390/nano10091771 |
work_keys_str_mv | AT boschifederico nanoparticlesforcerenkovandradioluminescentlightenhancementforimagingandradiotherapy AT spinelliantonelloenrico nanoparticlesforcerenkovandradioluminescentlightenhancementforimagingandradiotherapy |