Cargando…
Treatment of Severe COVID-19 with Tocilizumab Mitigates Cytokine Storm and Averts Mechanical Ventilation during Acute Respiratory Distress: A Case Report and Literature Review
COVID-19, caused by the novel severe acute respiratory coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, in 2019 and has resulted in the current pandemic. The disease continues to pose a major therapeutic challenge. Patient mortality is ultimately caused by acute respiratory distress syndrome (AR...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559384/ https://www.ncbi.nlm.nih.gov/pubmed/32635353 http://dx.doi.org/10.3390/tropicalmed5030112 |
_version_ | 1783594849175339008 |
---|---|
author | Farooqi, Faryal Dhawan, Naveen Morgan, Richard Dinh, John Nedd, Kester Yatzkan, George |
author_facet | Farooqi, Faryal Dhawan, Naveen Morgan, Richard Dinh, John Nedd, Kester Yatzkan, George |
author_sort | Farooqi, Faryal |
collection | PubMed |
description | COVID-19, caused by the novel severe acute respiratory coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, in 2019 and has resulted in the current pandemic. The disease continues to pose a major therapeutic challenge. Patient mortality is ultimately caused by acute respiratory distress syndrome (ARDS). Cytokine release syndrome (or “cytokine storm”) is likely to be a contributing factor to ARDS in many patients. Because interleukin 6 (IL-6) is known to play a key role in inflammation, IL-6 receptor inhibitors such as tocilizumab may potentially treat COVID-19 by attenuating cytokine release. We present the case of a 48-year-old male with severe COVID-19, on the verge of meeting intubation requirements, who needed progressive oxygen support for respiratory distress. The patient was treated with a non-weight-based dosage of tocilizumab to prevent the onset of a cytokine storm. We chose to administer an IL-6 inhibitor because of the gradually increasing levels of acute phase reactants identified on serial blood draws, as well as his declining respiratory status. The treatment was well-tolerated in conjunction with standard drug therapies for COVID-19 (hydroxychloroquine, azithromycin, and zinc). The patient subsequently experienced marked improvements in his respiratory symptoms and overall clinical status over the following days. We believe that tocilizumab played a substantial role in his ability to avert clinical decline, particularly the need for mechanical ventilation. Ultimately, the patient was downgraded from the ICU and discharged within days. We highlight the potential of IL-6 inhibitors to prevent the progression of respiratory disease to a point requiring ventilator support. This case underscores the potential importance of early serial measurements of IL-6 and cytokine storm-associated acute phase reactants, such as ferritin, D-dimer, and C-reactive protein, in guiding clinical decision-making in the management of patients with suspected COVID-19. Conclusion: The early, proactive identification of serum acute phase reactants should be implemented in the treatment of COVID-19 in order to screen for a primary contributor to mortality—the cytokine storm. This screening, when followed by aggressive early treatment for cytokine storm, may have optimal therapeutic benefits and obviate the need for mechanical ventilation, thereby decreasing mortality. Additionally, we review current evidence regarding cytokine release syndrome in COVID-19 and the use of IL-6 receptor inhibition as a therapeutic strategy, and examine other reported cases in the literature describing IL-6 antagonist treatment for patients with COVID-19. |
format | Online Article Text |
id | pubmed-7559384 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75593842020-10-26 Treatment of Severe COVID-19 with Tocilizumab Mitigates Cytokine Storm and Averts Mechanical Ventilation during Acute Respiratory Distress: A Case Report and Literature Review Farooqi, Faryal Dhawan, Naveen Morgan, Richard Dinh, John Nedd, Kester Yatzkan, George Trop Med Infect Dis Case Report COVID-19, caused by the novel severe acute respiratory coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, in 2019 and has resulted in the current pandemic. The disease continues to pose a major therapeutic challenge. Patient mortality is ultimately caused by acute respiratory distress syndrome (ARDS). Cytokine release syndrome (or “cytokine storm”) is likely to be a contributing factor to ARDS in many patients. Because interleukin 6 (IL-6) is known to play a key role in inflammation, IL-6 receptor inhibitors such as tocilizumab may potentially treat COVID-19 by attenuating cytokine release. We present the case of a 48-year-old male with severe COVID-19, on the verge of meeting intubation requirements, who needed progressive oxygen support for respiratory distress. The patient was treated with a non-weight-based dosage of tocilizumab to prevent the onset of a cytokine storm. We chose to administer an IL-6 inhibitor because of the gradually increasing levels of acute phase reactants identified on serial blood draws, as well as his declining respiratory status. The treatment was well-tolerated in conjunction with standard drug therapies for COVID-19 (hydroxychloroquine, azithromycin, and zinc). The patient subsequently experienced marked improvements in his respiratory symptoms and overall clinical status over the following days. We believe that tocilizumab played a substantial role in his ability to avert clinical decline, particularly the need for mechanical ventilation. Ultimately, the patient was downgraded from the ICU and discharged within days. We highlight the potential of IL-6 inhibitors to prevent the progression of respiratory disease to a point requiring ventilator support. This case underscores the potential importance of early serial measurements of IL-6 and cytokine storm-associated acute phase reactants, such as ferritin, D-dimer, and C-reactive protein, in guiding clinical decision-making in the management of patients with suspected COVID-19. Conclusion: The early, proactive identification of serum acute phase reactants should be implemented in the treatment of COVID-19 in order to screen for a primary contributor to mortality—the cytokine storm. This screening, when followed by aggressive early treatment for cytokine storm, may have optimal therapeutic benefits and obviate the need for mechanical ventilation, thereby decreasing mortality. Additionally, we review current evidence regarding cytokine release syndrome in COVID-19 and the use of IL-6 receptor inhibition as a therapeutic strategy, and examine other reported cases in the literature describing IL-6 antagonist treatment for patients with COVID-19. MDPI 2020-07-03 /pmc/articles/PMC7559384/ /pubmed/32635353 http://dx.doi.org/10.3390/tropicalmed5030112 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Case Report Farooqi, Faryal Dhawan, Naveen Morgan, Richard Dinh, John Nedd, Kester Yatzkan, George Treatment of Severe COVID-19 with Tocilizumab Mitigates Cytokine Storm and Averts Mechanical Ventilation during Acute Respiratory Distress: A Case Report and Literature Review |
title | Treatment of Severe COVID-19 with Tocilizumab Mitigates Cytokine Storm and Averts Mechanical Ventilation during Acute Respiratory Distress: A Case Report and Literature Review |
title_full | Treatment of Severe COVID-19 with Tocilizumab Mitigates Cytokine Storm and Averts Mechanical Ventilation during Acute Respiratory Distress: A Case Report and Literature Review |
title_fullStr | Treatment of Severe COVID-19 with Tocilizumab Mitigates Cytokine Storm and Averts Mechanical Ventilation during Acute Respiratory Distress: A Case Report and Literature Review |
title_full_unstemmed | Treatment of Severe COVID-19 with Tocilizumab Mitigates Cytokine Storm and Averts Mechanical Ventilation during Acute Respiratory Distress: A Case Report and Literature Review |
title_short | Treatment of Severe COVID-19 with Tocilizumab Mitigates Cytokine Storm and Averts Mechanical Ventilation during Acute Respiratory Distress: A Case Report and Literature Review |
title_sort | treatment of severe covid-19 with tocilizumab mitigates cytokine storm and averts mechanical ventilation during acute respiratory distress: a case report and literature review |
topic | Case Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559384/ https://www.ncbi.nlm.nih.gov/pubmed/32635353 http://dx.doi.org/10.3390/tropicalmed5030112 |
work_keys_str_mv | AT farooqifaryal treatmentofseverecovid19withtocilizumabmitigatescytokinestormandavertsmechanicalventilationduringacuterespiratorydistressacasereportandliteraturereview AT dhawannaveen treatmentofseverecovid19withtocilizumabmitigatescytokinestormandavertsmechanicalventilationduringacuterespiratorydistressacasereportandliteraturereview AT morganrichard treatmentofseverecovid19withtocilizumabmitigatescytokinestormandavertsmechanicalventilationduringacuterespiratorydistressacasereportandliteraturereview AT dinhjohn treatmentofseverecovid19withtocilizumabmitigatescytokinestormandavertsmechanicalventilationduringacuterespiratorydistressacasereportandliteraturereview AT neddkester treatmentofseverecovid19withtocilizumabmitigatescytokinestormandavertsmechanicalventilationduringacuterespiratorydistressacasereportandliteraturereview AT yatzkangeorge treatmentofseverecovid19withtocilizumabmitigatescytokinestormandavertsmechanicalventilationduringacuterespiratorydistressacasereportandliteraturereview |