Cargando…

Tracking and Analyzing Public Emotion Evolutions During COVID-19: A Case Study from the Event-Driven Perspective on Microblogs

Objective: Coronavirus disease 2019 (COVID-19) has caused substantial panic worldwide since its outbreak in December 2019. This study uses social networks to track the evolution of public emotion during COVID-19 in China and analyzes the root causes of these public emotions from an event-driven pers...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qi, Wei, Cong, Dang, Jianning, Cao, Lei, Liu, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559419/
https://www.ncbi.nlm.nih.gov/pubmed/32967163
http://dx.doi.org/10.3390/ijerph17186888
_version_ 1783594856817360896
author Li, Qi
Wei, Cong
Dang, Jianning
Cao, Lei
Liu, Li
author_facet Li, Qi
Wei, Cong
Dang, Jianning
Cao, Lei
Liu, Li
author_sort Li, Qi
collection PubMed
description Objective: Coronavirus disease 2019 (COVID-19) has caused substantial panic worldwide since its outbreak in December 2019. This study uses social networks to track the evolution of public emotion during COVID-19 in China and analyzes the root causes of these public emotions from an event-driven perspective. Methods: A dataset was constructed using microblogs (n = 125,672) labeled with COVID-19-related super topics (n = 680) from 40,891 users from 1 December 2019 to 17 February 2020. Based on the skeleton and key change points of COVID-19 extracted from microblogging contents, we tracked the public’s emotional evolution modes (accumulated emotions, emotion covariances, and emotion transitions) by time phase and further extracted the details of dominant social events. Results: Public emotions showed different evolution modes during different phases of COVID-19. Events about the development of COVID-19 remained hot, but generally declined, and public attention shifted to other aspects of the epidemic (e.g., encouragement, support, and treatment). Conclusions: These findings suggest that the public’s feedback on COVID-19 predated official accounts on the microblog platform. There were clear differences in the trending events that large users (users with many fans and readings) and common users paid attention to during each phase of COVID-19.
format Online
Article
Text
id pubmed-7559419
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75594192020-10-26 Tracking and Analyzing Public Emotion Evolutions During COVID-19: A Case Study from the Event-Driven Perspective on Microblogs Li, Qi Wei, Cong Dang, Jianning Cao, Lei Liu, Li Int J Environ Res Public Health Article Objective: Coronavirus disease 2019 (COVID-19) has caused substantial panic worldwide since its outbreak in December 2019. This study uses social networks to track the evolution of public emotion during COVID-19 in China and analyzes the root causes of these public emotions from an event-driven perspective. Methods: A dataset was constructed using microblogs (n = 125,672) labeled with COVID-19-related super topics (n = 680) from 40,891 users from 1 December 2019 to 17 February 2020. Based on the skeleton and key change points of COVID-19 extracted from microblogging contents, we tracked the public’s emotional evolution modes (accumulated emotions, emotion covariances, and emotion transitions) by time phase and further extracted the details of dominant social events. Results: Public emotions showed different evolution modes during different phases of COVID-19. Events about the development of COVID-19 remained hot, but generally declined, and public attention shifted to other aspects of the epidemic (e.g., encouragement, support, and treatment). Conclusions: These findings suggest that the public’s feedback on COVID-19 predated official accounts on the microblog platform. There were clear differences in the trending events that large users (users with many fans and readings) and common users paid attention to during each phase of COVID-19. MDPI 2020-09-21 2020-09 /pmc/articles/PMC7559419/ /pubmed/32967163 http://dx.doi.org/10.3390/ijerph17186888 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Li, Qi
Wei, Cong
Dang, Jianning
Cao, Lei
Liu, Li
Tracking and Analyzing Public Emotion Evolutions During COVID-19: A Case Study from the Event-Driven Perspective on Microblogs
title Tracking and Analyzing Public Emotion Evolutions During COVID-19: A Case Study from the Event-Driven Perspective on Microblogs
title_full Tracking and Analyzing Public Emotion Evolutions During COVID-19: A Case Study from the Event-Driven Perspective on Microblogs
title_fullStr Tracking and Analyzing Public Emotion Evolutions During COVID-19: A Case Study from the Event-Driven Perspective on Microblogs
title_full_unstemmed Tracking and Analyzing Public Emotion Evolutions During COVID-19: A Case Study from the Event-Driven Perspective on Microblogs
title_short Tracking and Analyzing Public Emotion Evolutions During COVID-19: A Case Study from the Event-Driven Perspective on Microblogs
title_sort tracking and analyzing public emotion evolutions during covid-19: a case study from the event-driven perspective on microblogs
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559419/
https://www.ncbi.nlm.nih.gov/pubmed/32967163
http://dx.doi.org/10.3390/ijerph17186888
work_keys_str_mv AT liqi trackingandanalyzingpublicemotionevolutionsduringcovid19acasestudyfromtheeventdrivenperspectiveonmicroblogs
AT weicong trackingandanalyzingpublicemotionevolutionsduringcovid19acasestudyfromtheeventdrivenperspectiveonmicroblogs
AT dangjianning trackingandanalyzingpublicemotionevolutionsduringcovid19acasestudyfromtheeventdrivenperspectiveonmicroblogs
AT caolei trackingandanalyzingpublicemotionevolutionsduringcovid19acasestudyfromtheeventdrivenperspectiveonmicroblogs
AT liuli trackingandanalyzingpublicemotionevolutionsduringcovid19acasestudyfromtheeventdrivenperspectiveonmicroblogs