Cargando…
Machine learning is a valid method for predicting prehospital delay after acute ischemic stroke
OBJECTIVES: This study aimed to identify the influencing factors associated with long onset‐to‐door time and establish predictive models that could help to assess the probability of prehospital delay in populations with a high risk for stroke. MATERIALS AND METHODS: Patients who were diagnosed with...
Autores principales: | Yang, Li, Liu, Qinqin, Zhao, Qiuli, Zhu, Xuemei, Wang, Ling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559608/ https://www.ncbi.nlm.nih.gov/pubmed/32812396 http://dx.doi.org/10.1002/brb3.1794 |
Ejemplares similares
-
Reasons for Prehospital Delay in Acute Ischemic Stroke
por: Fladt, Joachim, et al.
Publicado: (2019) -
Identification of high-risk factors for prehospital delay for patients with stroke using the risk matrix methods
por: Gao, Zihan, et al.
Publicado: (2022) -
Stroke awareness decreases prehospital delay after acute ischemic stroke in korea
por: Kim, Young Seo, et al.
Publicado: (2011) -
Status of prehospital delay and intravenous thrombolysis in the management of acute ischemic stroke in Nepal
por: Nepal, Gaurav, et al.
Publicado: (2019) -
Factors Associated with Shortening of Prehospital Delay among Patients with Acute Ischemic Stroke
por: Soto-Cámara, Raúl, et al.
Publicado: (2019)