Cargando…

Seismic Behavior of Steel Column Base with Slip-Friction Connections

Traditional rigid column base connections are damaged to different degrees after an earthquake and the damage is generally nonrecoverable. Thus, the cost of repairing or dismantling is quite high. A new type of slip-friction column base connection is proposed in this paper, which aims to replace the...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chengyu, Liu, Qi, Li, Gongwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559748/
https://www.ncbi.nlm.nih.gov/pubmed/32916860
http://dx.doi.org/10.3390/ma13183986
Descripción
Sumario:Traditional rigid column base connections are damaged to different degrees after an earthquake and the damage is generally nonrecoverable. Thus, the cost of repairing or dismantling is quite high. A new type of slip-friction column base connection is proposed in this paper, which aims to replace the yielding energy dissipation of the traditional column base connection by the sliding friction energy dissipation between the arc endplates, thus achieving the design objective of damage-free energy dissipation. Finite element simulation was conducted to study the hysteretic performance of the proposed connections considering different axial compression ratios. The research indicates that both kinds of the proposed connections show good energy dissipation behavior and the increase of axial compression force can increase the energy dissipation ability. It also shows that the two kinds of connections can achieve the objective of damage-free energy dissipation. For the proposed connection, future research is still needed such as corresponding tests in the laboratory, the effect of the connection on the whole structure, and the re-centering systems for the connections.