Cargando…

Opioids, Polypharmacy, and Drug Interactions: A Technological Paradigm Shift Is Needed to Ameliorate the Ongoing Opioid Epidemic

Polypharmacy is a common phenomenon among adults using opioids, which may influence the frequency, severity, and complexity of drug–drug interactions (DDIs) experienced. Clinicians must be able to easily identify and resolve DDIs since opioid-related DDIs are common and can be life-threatening. Give...

Descripción completa

Detalles Bibliográficos
Autores principales: Matos, Adriana, Bankes, David L., Bain, Kevin T., Ballinghoff, Tyler, Turgeon, Jacques
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559875/
https://www.ncbi.nlm.nih.gov/pubmed/32854271
http://dx.doi.org/10.3390/pharmacy8030154
Descripción
Sumario:Polypharmacy is a common phenomenon among adults using opioids, which may influence the frequency, severity, and complexity of drug–drug interactions (DDIs) experienced. Clinicians must be able to easily identify and resolve DDIs since opioid-related DDIs are common and can be life-threatening. Given that clinicians often rely on technological aids—such as clinical decision support systems (CDSS) and drug interaction software—to identify and resolve DDIs in patients with complex drug regimens, this narrative review provides an appraisal of the performance of existing technologies. Opioid-specific CDSS have several system- and content-related limitations that need to be overcome. Specifically, we found that these CDSS often analyze DDIs in a pairwise manner, do not account for relevant pharmacogenomic results, and do not integrate well with electronic health records. In the context of polypharmacy, existing systems may encourage inadvertent serious alert dismissal due to the generation of multiple incoherent alerts. Future technological systems should minimize alert fatigue, limit manual input, allow for simultaneous multidrug interaction assessments, incorporate pharmacogenomic data, conduct iterative risk simulations, and integrate seamlessly with normal workflow.