Cargando…

Graphene Hybrid Materials for Controlling Cellular Microenvironments

Cellular microenvironments are known as key factors controlling various cell functions, including adhesion, growth, migration, differentiation, and apoptosis. Many materials, including proteins, polymers, and metal hybrid composites, are reportedly effective in regulating cellular microenvironments,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Cheol-Hwi, Kim, Tae-Hyung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559936/
https://www.ncbi.nlm.nih.gov/pubmed/32927729
http://dx.doi.org/10.3390/ma13184008
Descripción
Sumario:Cellular microenvironments are known as key factors controlling various cell functions, including adhesion, growth, migration, differentiation, and apoptosis. Many materials, including proteins, polymers, and metal hybrid composites, are reportedly effective in regulating cellular microenvironments, mostly via reshaping and manipulating cell morphologies, which ultimately affect cytoskeletal dynamics and related genetic behaviors. Recently, graphene and its derivatives have emerged as promising materials in biomedical research owing to their biocompatible properties as well as unique physicochemical characteristics. In this review, we will highlight and discuss recent studies reporting the regulation of the cellular microenvironment, with particular focus on the use of graphene derivatives or graphene hybrid materials to effectively control stem cell differentiation and cancer cell functions and behaviors. We hope that this review will accelerate research on the use of graphene derivatives to regulate various cellular microenvironments, which will ultimately be useful for both cancer therapy and stem cell-based regenerative medicine.