Cargando…

Characterization of Thermally Treated Gas-Atomized Al 5056 Powder

Aluminum 5056 is a work-hardenable alloy known for its corrosion resistance with new applications in additive manufacturing. A good understanding of the secondary phases in Al 5056 powders is important for understanding the properties of the final parts. In this study, the effects of different therm...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsaknopoulos, Kyle, Walde, Caitlin, Tsaknopoulos, Derek, Champagne, Victor, Cote, Danielle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560029/
https://www.ncbi.nlm.nih.gov/pubmed/32932610
http://dx.doi.org/10.3390/ma13184051
Descripción
Sumario:Aluminum 5056 is a work-hardenable alloy known for its corrosion resistance with new applications in additive manufacturing. A good understanding of the secondary phases in Al 5056 powders is important for understanding the properties of the final parts. In this study, the effects of different thermal treatments on the microstructure of Al 5056 powder were studied. Thermodynamic models were used to guide the interpretation of the microstructure as a function of thermal treatment, providing insight into the stability of different possible phases present in the alloy. Through the use of transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS), combined with thermodynamic modeling, a greater understanding of the internal microstructure of Al 5056 powder has been achieved in both the as-atomized and thermally treated conditions. Evidence of natural aging within these powders was observed, which speaks to the shelf-life of these powders and the importance of proper treatment and storage to maintain consistent results.